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Abstract

The asymptotic behavior of quadratic Hermite—Padé polynomials p,, ¢,, r, € 2, associated
with the exponential function is studied for n— co. These polynomials are defined by the
relation

PulE) + @) + 1(2)6 = O("2) as 20, (+)

where O(-) denotes Landau’s symbol. In the investigation analytic expressions are proved for
the asymptotics of the polynomials, for the asymptotics of the remainder term in (x), and also
for the arcs on which the zeros of the polynomials and of the remainder term cluster if the
independent variable z is rescaled in an appropriate way. The asymptotic expressions are
defined with the help of an algebraic function of third degree and its associated Riemann
surface. Among other possible applications, the results form the basis for the investigation of
the convergence of quadratic Hermite—Padé approximants, which will be done in a follow-up
paper.
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1. Introduction

We are concerned with the asymptotic behavior of the Hermite—Padé polynomials
(of type 1) associated with the exponential function e¢". The investigation is based on
a rescaling of the independent variable w. The rescaling method has already been
used in an analogous way by Szeg6 [24] for the study of Taylor polynomials of the
exponential function, and by Saff and Varga [20] for the study of Padé approximants
again associated with the exponential function. We start with basic definitions and a
short discussion of earlier research.

1.1. Hermite—Padé polynomials

In case of the exponential function the (diagonal) quadratic Hermite—Padé
polynomials (of type 1) p,, ¢n, rn € 2, are defined by the relation

en(W) = pu(w) + gu(w)e" + ry(w)e* = O(w2) as w—0 (1.1)

with e, called the remainder term, and by £, we have denoted the set of all
polynomials of degree at most n. The aim of the paper is to improve the
understanding of the asymptotic behavior of the Hermite—Padé polynomials
DPn, qn, 'n, and that of the remainder term e,. Among other applications, the results
are important for the study of the convergence of the quadratic Hermite—Padé
approximants

(W) = 2rnl(w)(qn(w) + \/qn(w)2 —4p,(w)r,(w)) (1.2)

to the function ¢". Approximant (1.2) is an immediate consequence of (1.1) if one
assumes the error term e, to be negligible. The convergence of quadratic
approximants will be investigated in a follow-up paper.

Quadratic Hermite-Padé approximants are a natural generalization of Padé
approximants. They generalize Padé approximants in the same way as Padé
approximants generalize Taylor polynomials, and they are also the first essential step
towards the more general concept of algebraic Hermite-Padé approximants of given
degree m>=2. In this more general framework, the quadratic Hermite—Padé
polynomials p,,q,, 7, are a special case of the Hermite-Padé polynomials
Pin €PnJ =0, ...,m, of type I and degree m>2, which are defined by the relation

Poss (W) 4 P1a (W)€ + - 4 pu, (W)™ = O(W"H")as w0, (1.3)
where n = (ny, ...,nm)el\l”“rl is a multi-index, |n| :=ny + -+ +n,, and m>=1. The
polynomials p;,,, and a complementary set of polynomials g;,,,j =0, ...,m, of type

I1, have been introduced by Hermite, and are perhaps most famous for the role they
have played in Hermite’s proof of the transcendence of the number e in [8]. In
Hermite’s proof the polynomials g;,, of type II have played the decisive role. A proof
of the transcendence of e based on the polynomials p;,, of type I was given later by
Mahler [13].
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Since these pioneering days the concept of Hermite—Padé approximants has kept a
place in number theory (cf., for instance, [13-15,5,9]) and in approximation theory
(cf. the survey about publications in approximation theory in [3], and a survey about
asymptotic results in [1]). Detailed studies of quadratic approximants and especially
of the polynomials p,, ¢,, r, have been done in [4,6,7,21]. In [4], among other things,
a 4-term recurrence relation together with very precise asymptotic estimates have
been proved. While in [4], like in (1.1), only the diagonal case has been considered,
the investigation has been extended to the non-diagonal situation in [6,7]. In [7] also
very interesting connections with special functions have been established, and the
paper contains results about the location of the zeros of all three polynomials p,,, ¢,
and r,. Actually, the plotting of the zeros of the middle polynomial ¢, in [7] has
triggered the interest of the author of the present paper. Especially the strange
phenomenon that the zeros of ¢, lie on a system of arcs that bifurcates on both ends
(cf. Fig. 1) attracted his interest, and the phenomenon was not accessible to an easy
and plausible explanation at the beginning of the investigations. A number of results
from [6,7] have been extended to the general case (1.3) in [26]. In [27] these results
have been used for an estimation of the irrationality of e.

1.2. Rescaling of the independent variable
Like in [4,6,7,26], we consider again the asymptotic behavior of the polynomials

DPn, ns 4u, but now from a new and somewhat special point of view. The zeros of the
polynomials p,, r,, and nearly all zeros of the polynomial ¢, tend to infinity as
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Fig. 1. The zeros of the polynomials p3y (stars), g3 (boxes), r3 (diamonds), and some of the zeros of the
remainder term es (triangles). (Notice that the axes in both directions have different scales.)
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n— co. This divergence to infinity is not surprising, as the exponential function is
entire, but for the investigation of the asymptotic behavior of the polynomials p,, ¢,,
and r, the divergence to infinity of most of the zeros is very unfortunate since many
specific aspects of the asymptotic behavior are no longer accessible if almost all zeros
cluster at infinity. It turns out that the asymptotic zero distributions and the
asymptotics for the polynomials themselves become much more informative if the
independent variable w is rescaled in such a way that the zeros of the transformed
polynomials have finite cluster points as n— co. We have already earlier mentioned
that the concept of rescaling has been introduced by Szegd in [24] for the study of the
asymptotic behavior of Taylor polynomials associated with the exponential function,
and has also been used successfully by Saff and Varga in [20] for the study of zeros
and poles of Padé approximants, again associated with the exponential function.

In the same spirit as in [20,24] we introduce as a new independent variable

w
z= W n=12 ...,

for the study of the quadratic Hermite-Padé polynomials. Then the transformed
polynomials P,, Q,, and R, are defined by

P,(z) = p,(3nz), Qun(z) = q.(3nz), R,(z) =r,(3nz). (L.5)

It is immediate that all asymptotic results that are proved in the variable z can easily
be transferred to the situation of the original variable w. The new polynomials satisfy
the relation

E,(z) = Pu(2)(e7)" 4+ Qu(2) + Ru(2)(e¥)" = O(z"%) as z—0, (1.6)

(1.4)

which, of course, is equivalent to relation (1.1). The remainder term E, in (1.6) is
connected with e, by the relation E,(z) = e,(3nz)e¥".

Note that in (1.6) not only the variable w has been substituted by 3nz; the original
relation (1.1) has also been multiplied by e™" in order to make the inherent symmetry
of the problem more evident. From (1.6) it immediately follows that P,(z) = R,(—z)
and Q,(z) = On(—2).

The polynomials p,, ¢, 1y, and P,, Q,, R, are determined by (1.1) or (1.6) only up
to a constant factor. This ambiguity is eliminated by assuming that the polynomial
P, is monic, i.e., that

P,(z)=2"+- €2, (1.7)

Since the polynomials p,, g,,r, form a perfect system (cf. [15]), the normalization
(1.7) is always possible. (This possibility follows also from representation (1.11),
below.)

Rescaling (1.4) could have been done with any multiple of n as denominator in
(1.4) without changing the results in an essential way. The number 3n has been
chosen since it is asymptotically equal to the number 3n + 3 of free coefficients in
relation (1.1) or (1.6).

The transformed approximant A4,(z) = «,(3nz) is associated with the function

(32)3” =exp(3nz) in the same way as the approximant o,, defined, in (1.2) is
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associated with the function ¢*. We have

Al2) = 3= Q041030 — 4P, R, (1.8

1.3. Methodological aspects

The zeros of the polynomials psg, ¢30, 730, and some of the zeros of the remainder
term e3 are shown in Fig. 1. These zeros, and of course in the same way also the
zeros of the polynomials P3y, O3y, R30, and those of the remainder term Ej3j, form a
very regular pattern, which certainly suggests that there should exist some analytic
background for such a regular behavior. The main aim of the present paper is to
prove analytic expressions for the asymptotic behavior of the polynomials P,, Oy,
R,, and the remainder term E,. A core piece of these analytic expressions is an
algebraic function  of third degree, and a harmonic function / defined on the
Riemann surface # associated with .

The asymptotics are derived by a saddle point method from the well-known (cf.
[10]) integral representations:

i e
0.(z) = 2’1'12;; ]{CO U+liz_ dzl;)nw (1.10)
R
Ei(2) = 2?2123: ?{c % u+1i;z_ dz;)nw (1.12)

which have already been used by Hermite. Formulae (1.9)-(1.12) are slightly
modified versions of the original formulae for p,, ¢,, r,, and e, given, for instance,
in [10]. The modifications reflect substitution (1.4) and normalization (1.7). In
(1.9)«(1.12) the integration paths C;, Cy, C_;, and C,, have to encircle the points
1,0, —1, oo, respectively. The three first curves are positively and the fourth one is
negatively oriented.

The asymptotics for the polynomials P,, Q,, R,, and the remainder term E, are
certainly of interest in their own right, but they form also the basis for the
investigation of the convergence behavior of the approximants A4, and a,, which will
be done in a follow-up paper. Of special interest is the phenomenon that the
approximants 4,, and consequently also the algebraic approximants o, have branch
points on the imaginary axis that do not correspond to singularities of the function
to be approximated. Thus, they are an example for spurious branch points.

The phenomenon of spurious poles is well-known in the theory of Padé
approximation (cf., for instance, [2] or [22]). It seems that the quadratic



H. Stahl | Journal of Approximation Theory 125 (2003) 238-294 243

Hermite—Padé approximants to the exponential function provide the first example of
spurious branch points of algebraic Hermite-Padé approximants. The asymptotic
behavior of quadratic Hermite-Padé polynomials of type II will be studied in a
follow-up paper. First results are already contained in the paper [23].

After the present paper had been submitted for publication, another approach to
the analysis of strong asymptotics of quadratic Hermite—Padé polynomials of type I
has been undertaken in a paper by Kuijlaars et al., [11], which is based on a
Riemann—Hilbert problem. An announcement of this result has already been
published in [12].

The paper is organized as follows: Section 2 contains the statements and short
discussions of all main results. In Section 3 results are proved which are related to the
geometry of the arcs on which the zeros of the polynomials P,, Q,, R,, and of the
remainder term E, cluster. The asymptotic relations for the polynomials P,, Q,, R,,
and the remainder term E, are then proved in Section 4.

2. Main results

We start with theorems concerning the asymptotic distributions of the zeros and
the nth root asymptotic behavior of the polynomials P,, Q,, R,, and the remainder
term E, introduced in (1.6) and standardized by (1.7). The nth root asymptotic
relations are preliminary versions of more precise results, which will be stated in
Section 2.4 after several preparatory definitions have been made that are needed for
the formulation of the strong asymptotic relations. These definitions involve a
Riemann surface # and a harmonic function % defined on £, both objects will be
introduced in Section 2.2.

The weak versions of the asymptotic results have been placed in front, in order to
give some orientation and also motivation for the more technical definitions, which
follow in the Sections 2.2 and 2.3. The whole section is closed by two theorems
containing tools for an efficient numerical calculation of the objects used in the
asymptotic relations.

2.1. Weak versions of the asymptotic results

For a polynomial or an entire function F the (multi-)set of its zeros in C is denoted
by Z(F) and the zero counting measure v is defined as

vE= ) O (2.1)
)

xeZ(F

with J, denoting Dirac’s measure at xeC. In case of an entire function F, the set
Z(F) can be infinite; multiplicities of zeros are represented by repetitions in Z(F).

By - we denote the weak convergence of measures in C, i.e., we have w, 5 pif, and
only if, [/ dw,— [f du for all continuous functions /* with compact support in C.
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Theorem 2.1. There exist three probability measures v;, j = —1,0,1, each with a
compact support, and a positive measure v, with an unbounded support such that

zVPn*)V_l, ZVQ”*)V(), EVR”*)V],

1 x
ZVE, = Voo +30p asn— . (2.2)

It will be shown below in Lemma 2.6 that the supports of the measures v;, j =
—1,0,1, oo, consist either of analytic Jordan arcs or are the union of several analytic
Jordan arcs. The measures v; are absolutely continuous with respect to these Jordan
arcs, and for their density functions exist analytic expressions, which are given in
Theorem 2.8, below. The arcs that form the supports of the measures v;, j =
—1,0,1, o0, are shown in Fig. 2, and a comparison of these arcs with Fig. 1, which is
given in Fig. 3, shows that there is an impressive accordance.

The term 30y in the fourth limit of (2.2) stems from the zero of order at least
3n+ 2, which the remainder term E, has at the origin.

The asymptotics for the polynomials P,, Q,, R, and the remainder term E, given
in the next theorem correspond in their precision with the results given in Theorem
2.1. Stronger versions of the asymptotic relations are contained in Theorem 2.9,
below.

Theorem 2.2. Locally uniformly we have

1
lim Zlog|P,,(z)| = /log\z— t|dv_i(t) for zeC\supp(v_;),

n— oo

1
lim ;log |On(z)| =log2 +/log |z — 1] dvo(t) for ze C\supp(vo),

n— oo

Fig. 2. The arcs I'_;, I'}, the set Ky = I'go U --- U4, and parts of the set Ko, =T U - Ul 4.
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Fig. 3. An overlay of Figs. 2 and 1 after a shrinking of the scales of Fig. 1 in accordance with
transformation (1.4).

1
lim Zlog|R,,(z)| = /log |z =1t dvi(t) for zeC\supp(v}),

n— oo

lim %log |E,(2)| = h(ver;z)  for zeC\supp(ve, ), (2.3)

n— oo

with h(v; ) defined by

h(ve;z) =3log|z| + lim

rlz — 1|
lo —dv (1)+
‘/tgr g|r2 _ tZl @( )
2

1 =z
—2logr+-— max(—3 Re(?),log(2), 3 Re(¢
), max(=3 Re(0),log(2), 3 Re(o)) = 5

| 2

|dt||.

(2.4)

Remark. The measure v,, has an unbounded support and is of infinite mass. As a
consequence its logarithmic potential is finite only after renormalization. In
definition (2.4) of the function (v ;-) finiteness has been secured by a compensating
term, which reflects the behavior of /(v ;-) near infinity. Note that the last two
terms in (2.4) are harmonic in {|z|<r}, which implies that all zeros of E, are
asymptotically represented by the measure 3¢ + v .

2.2. The Riemann surface # and the functions  and h
We start by defining a Riemann surface % together with an algebraic function v,

which is then followed by the definition of a harmonic function 2 on #£. All three
objects Z, , and h are basic for the formulation of the strong asymptotic relations.
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Definition 2.3. The Riemann surface # together with the bijective mapping y : #— C
and the canonical projection n: #—C of the surface # onto C is defined by the
property that the function

P —1/3 -

Z(U) = m, UEC, (25)
satisfies
zo({) =n({) for all (€. (2.6)

The function  is algebraic of third degree. The surface # has three sheets and

four simple branch points (;, j = 1, ...,4, over the four base points
zi=n((;) = /1/3¢" with ¢, = Sm, hngn 3, j=1,..,4 (2.7)
Indeed, the derivative
Y +1/3
z(v) = _L/z (2.8)
(2 —1)

has simple zeros at the four points v; = /—1/3,j =1, ..., 4, and it is easy to check
that the four points (2.7) are defined by z; = oy (vj) = z(vj),j = 1, ..., 4, if the four
roots v;, j=1,...,4, are numbered in an appropriate way. The Riemann surface #
is of genus 0.

Points on # will be denoted by (, while the associated base points n({) will be
denoted by zeC. For shortness we call the points {,j=1,...,4, and also their base
points z; = n({;), given in (2.7), branch points of #. From (2.5) and (2.6) one easily
deduces that

por ™' ({0}) = {=/1/3,00,/1/3} and yern'({o0}) = {-1,0,1}.  (2.9)
We assume that the defining relation (1.6) of the Hermite-Padé polynomials P,

0., R, is lifted to # so that a neighborhood of the origin in C corresponds to a
neighborhood of the point {, on # with {, defined by

L=y (). (2.10)
By definition we have n({y) = 0, which is compatible with (2.10) because of (2.9).
In the next definitions and the analysis that follows, the function y will be of

fundamental importance. For a given { e % the value v = /({) e C can be calculated
very efficiently by solving the cubic equation

(v —1)—v* +1=0. (2.11)

Indeed, Eq. (2.11) has three solutions, and the value v = ({) is one of them.
However, the selection of the right solution is more difficult than solving Eq. (2.11).
Any procedure for the selection defines a sheet structure on the surface #, and on the
other hand, if such a sheet structure has already been defined, then the selection is
determined by the three sheets of #. It turns out that for our purpose, i.c., for the
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asymptotic relations (2.33)—(2.36) in Theorem 2.9, below, a specific definition of
sheets is needed. Their definition is implicitly already contained in relations (2.3) of
Theorem 2.2, but an explicit definition of these sheets demands some preparations. It
will be done with the help of a harmonic function 4 defined on %, which will be
introduced next after a short remark about Cardano’s formulae.

Cardano’s formulae give explicit solutions for Eq.(2.11). However, the sheet
structure on the surface # defined by the solutions of Cardano’s formulae is rather
complicated, and we have not found any practical usefulness for them in connection
with our asymptotic problems.

We now come to the definition of the functions % together with an analytic
completed version i* of h.

Definition 2.4. The functions #*: #—C and h: #— R are defined as

() =u() and h(() =Reuy({) for (eR with (2.12)
20? 2
u(v) = 02i1+10g3v(02f1)' (2.13)

It is immediate that the function 4 is harmonic in 2\({{;}un~'({c})) and
subharmonic at {,. The function /4* is an analytic completion of %, but #* is not
single-valued because of the logarithmic terms in (2.13).

In order to motivate the definition of the function 4, we show in the next lemma
that this function is already fully determined by requirements that are immediate
consequences of the assumption that the three branches of the multivalued function
hern~! could be used for the representation of the right-hand sides of the asymptotic
relations (2.3) in Theorem 2.2.

Lemma 2.5. Let 0", 0 o) e denote the three points of 1" ({ o0 }) numbered
in such a way that (o)) =j for j=—1,0,1. If the function h is harmonic in
A\{ ooV, 0® o) ¢V and satisfies

Q) = =3Ren(() +log|n(0)| + O(1/n(0)) as {— oY, (2.14)
() = log [n({)| + O(1) as (>0, (2.15)
h(C) = 3Re(n(()) + log [n(0)| + O(1) as {— o0, (2.16)
h(¢) = 3log ()] + O(1) as (=L, (2.17)

then h is identical with the function h defined by (2.12) and (2.13).

Remark. If one wants to use branches of the multivalued function hon~! for
asymptotic representations of the four expressions 1log|P,(z)e |, llog |0, (2)],
l 3 z ‘1 . . . . .

~log |R,(z)e™|, and ;log |E,(z)| in the asymptotic relations (2.3), then it is clearly
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necessary that the three branch functions of son~! near infinity have to satisfy the
three relations (2.14)~(2.16), and in addition one branch of the function Aen~! has to
satisfy (2.17) at the origin. The same conclusions can be drawn directly from relation
(1.6). Standardization (1.7) implies that in relation (2.14) the constant term is absent.
Since we have assumed that relation (1.6) is lifted to £ with the origin corresponding
to {y, relation (2.17) is a consequence of the zero of order at least 3n + 2 that the
remainder term E, has at the origin.

No proofs are given in the present section; all proofs are postponed to later
sections. Thus, for instance, Lemma 2.5 will be proved in Section 3.

The introduction of the algebraic function y and the Riemann surface # in
Definition 2.3 is somewhat unmotivated at the present stage. In any case, it can be
accepted as an ansatz, which then will be justified in hindsight by the strong
asymptotic results in Theorem 2.9, below.

That an algebraic function of third degree should be involved could also be
deduced from the 4-term recurrence relations, which have been proved in [4] for the
polynomials P,, Q,,, R,. Such a function corresponds also with a general conjecture
in [16], where an algebraic function of degree m + 1 has been introduced for the
description of the asymptotic behavior of the Hermite-Padé polynomials p;,, defined
by relation (1.3).

2.3. Definition of the measures v;
An analytic definition for the measures v;,j = —1,0, 1, co, which have appeared in

Theorems 2.1 and 2.2, will be given together with an analytic description of the arcs
that form the supports of these measures. The arcs are also the boundaries of

domains Dj,j = —1,0,1, co, which will be introduced as domains of definition for
branch functions /;, h;‘, and y;,j = —1,0,1, 00, of the multivalued functions hom™ !,

h*on~', and Yon~!, respectively. These branch functions turn out to be building
blocks for the strong versions of the asymptotic relations for the polynomials
P,, 0., R,, and the remainder term E,,.

Associated with the function / from Definition 2.4 we consider the function

hinax (2) = max{h({) | (e R, n({) =z}, zeC. (2.18)

Note that this function is defined on C, while the function 4 had been defined on .
Since 4 is harmonic in #\({{o}un~!({0})) and subharmonic in a neighborhood of
(o, it follows from a standard result in potential theory (cf. [18, Chapter 2]) that the
function /., as the maximum of subharmonic functions, is also subharmonic.
Further, we know from that result that /,,, is harmonic at all ze C except for those
loci z, where at least two different branches of the multi-valued function hom™!
assume both the maximal value /.x(z). From the Poisson-Jensen formula of
potential theory (cf. [18, Theorem 4.5.1]) we further know that because of its
subharmonicity, the function /Ap,x can be represented as the sum of a harmonic
function and a Green potential. These details are formulated in the next lemma
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together with a description of the analytic arcs, on which the function /iy, is not
harmonic.

Lemma 2.6. The function hy,y is subharmonic in C. There exists a system I of analytic
Jordan arcs such that hy,y is harmonic in C\I', but not harmonic in any neighborhood of
a point zeT'. There exists a positive measure v on I such that for any R>0 we have

hon(2) = ha(2) + / R(z —1)

log ‘7_
[t|<R

: < .
O dv(t) for |z|<R (2.19)

with hg a function, which is harmonic in {|z| <R} and satisfies
hr(z) = hmax(z) for |z] = R. (2.20)

The system of arcs T is symmetric with respect to the x- and the y-axis, and it can be
broken down in subarcs such that

F:F,luKoul“]qu :KfluK()UKlqu@7 (221)
where
(1) K_y =T is an analytic Jordan arc connecting the two branch points z, and z3 in
{Re(z) <0},
(i1) Ky = Iy is an analytic Jordan arc connecting the two branch points z| and z4 in
{Re(z) >0},
(ii1) Ky is the union of five analytic Jordan arcs Ty, oy, ..., Toa, where Ty =

[—iy1, iv1], 31 >0, the two Jordan arcs Ty and Ty, connect the two branch points z, and
zy with the point iy, and the two Jordan arcs T3 and T4 connect the two branch points
z3 and z4 with the point —iyy, respectively. As a numerical value for y, we have

y1=0.621391. (2.22)

(iv) K, is the union of four analytic Jordan arcs U o1, ..., U o4, which are disjoint in
C, and each arc I ; connects the branch point z;,j = 1, ..., 4, with infinity. The branch
points zy, ..., z4 have been defined in (2.7).

Remarks. (1) All subarcs of I introduced in Lemma 2.6 are shown in Fig. 2. At each
point of a subarc two branches of the function #on~! assume the same value. If one
crosses one of the subarcs of I', then two branches of hon~! interchange their role as
largest and second largest branch function of /4 in definition (2.18) of /i,,x. Only at
the three points —iy,iy;, and co, all three branches of son~! have identical values.
At all other points of I only two branches coincide, and the third one is smaller. At
infinity the situation is special and more complicated since there all three branches of
hom~! have singularities.

(2) The function /Ay, can be calculated very efficiently for any given zeC by
solving Eq. (2.11) with n({) replaced by z. If vy, v, v3 denote the three solutions of
the equation, then

hmax (2) = max Re u(vj) (2.23)



250 H. Stahl | Journal of Approximation Theory 125 (2003) 238-294

with u given by (2.13). Tools for an efficient numerical calculation of the subarcs of
I' are presented in Theorem 2.10, below.

(3) The expression log |(R* — 7z)/(R(z — 1)) in (2.19) is the Green function g(z, ?)
in the disc {|z|<R}.

In the strong asymptotic relations of Theorem 2.9, below, we need branch
functions of the multivalued function son~!, which are defined in domains that are
complementary to the sets K;, j = —1,0, 1, oo, introduced in (2.21) of Lemma 2.6.
Branch functions of the multivalued functions yon~'and hj’-‘on‘l are defined in the
same domains.

Definition 2.7. Let the domains D;,j = —1,0, 1, co, be defined as
D/ = C\I<H j = _1’0’ 1’ w? (2'24)

with the sets K; introduced in Lemma 2.6. Let further ;,j = —1,0,1, o0, be the

branch functions of the multivalued function yon~! that are defined in the domains
D; and satisfy

Yj(0)=j forj=-1,0,1, and ¥, (0)=oco forj= 0. (2.25)

In the same domains D;, j = —1,0,1, co, branch functions nj‘l, hj, and h;,j =

—1,0,1, 00, of the multi-valued function n~', hon~!, and h*on~!, respectively, are
defined by

nt =y ley, hj=hem;!, K =hen;' for j=-1,0,1, 0. (2.26)

Remarks. (1) It is immediate that the functions /; are harmonic in D; for j = —1,0, 1
and harmonic in D, \{0} for j = co. Like-wise, the functions /i and y; are analytic
in D; for j=-1,0,1, and in D, \{0} for j= oo. Because of the logarithmic
singularity at the origin, the function /4% is not single-valued in D, \{0}.

(2) From the definition of the sets K;, j = —1,0, 1, co, in Lemma 2.6 it follows that

U D=0z, ...z} (2.27)
J=—1,0,1,00
Each point ze K\{z1, ...,z4},/ = —1,0, 1, 00, is covered by exactly three of the four
domains D;,/ = —1,0,1, oo, and each point ze C\I', is covered by all four domains
D;,j=-1,0,1, .

(3) Since the function hon~! has three different branches at each ze C\{zy, ..., 24},
at least two of the four values 4;(z),j = —1,0, 1, co, have to be identical, and exactly
two of them are identical at each point ze C\{zy, ..., z4}, at which all three branches
of hon~! have different values. At each ze K)\{z1, ..., z4},j = —1,0,1, 00, at least two
of the three values /;(z),/e {—1,0, 1, oo }\{/}, are identical. It follows from the proof
of Lemma 3.3 in Section 3 that the two branch functions /; and 4,
h,he{-1,0,1, oo }\{/}, with identical values on K;\{z1, ..., z4} are the two branch
functions with the largest values.
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(4) The remark after Lemma 2.6 is also relevant with respect to the numerical
calculations of the functions y;, nj‘l ,h;, and hj’f introduced in Definition 2.7 since also
here the calculation of yon~!(z) is the key to all other calculations.

Next, we give an analytic definition for the four measures v;,j = —1,0,1, oo, that
appear in the asymptotic relations (2.2) and (2.3) of the Theorems 2.1 and 2.2.

Theorem 2.8. (i) The three restrictions
v ::V\Kj, j=-1,01, (2.28)

of the positive measure v introduced in (2.19) of Lemma 2.6 are probability measures.
The positive measure

Voo = Vg, (2.29)

has infinite mass.

The four measures v;, j = —1,0,1, oo, defined by (2.28) and (2.29) are identical with
the measures appearing in the Theorems 2.1 and 2.2. All four measures are absolutely
continuous with respect to arc length, and for their density functions we have the
representations

dvi(z) 1 { 0 0

&, nlon ) T g

with 0/0ny denoting the normal derivatives to both sides of the subarcs of the sets
K;, j=-1,0,1, 00, and ds. is the line element on these subarcs.

(ii) For the three functions h;, j = —1,0,1, introduced in Definition 2.7, we have the
representations

2
i) =3 Re(a) o)+ [loglz (o),
J
ze€, j=-1,0,1, (2.31)

b zek =10, (2:30)

with the measures v_y, vy, v| defined by (2.28), and for the fourth function h., we have
the representation

he (z) = 3log ‘%’ + hr(2) +/

lt|<R

lo ‘R(Z_’) dv, (1) for |J|<R (232

SRk

and any R>1. The function hg is the same as that defined by (2.20) in Lemma 2.6.
(ii)) We have ho, = h(vy;-) with h(vy, ;) defined in (2.4) of Theorem 2.2.

Remark. Since the measure v, is of infinite mass, representation (2.32) holds only
for R< oo. If R— oo, then the function /g and also the Green potential in (2.32) tend
to infinity, but both functions with opposite signs, and their sum remains finite for all
zeC\{0}.

With the definitions of the functions /;, h/’-‘, ¥;,J =—1,0,1, 00, and their domains
of definition D;,j = —1,0,1, oo, in Definitions 2.7 we are prepared to formulate the
strong asymptotic relations.



252 H. Stahl | Journal of Approximation Theory 125 (2003) 238-294
2.4. Strong asymptotic results

Strong versions of the asymptotic relations for the polynomials P,, Q,,, R,,, and the
remainder term E, are presented in the next theorem. These relations are the main

result of the present paper.

Theorem 2.9. Let the functions hi,y;, and their domains of definition D;,j =
—1,0,1, o0, be defined as in Definition 2.7. Then we have

2 . (D3 1
Py(2) = ——— " ()+32) (1 + O(—)) as n— o for zeD_y,
32+ 1 "
(2.33)
0,(z) =———=—=€"" 1+ 0| -] | as n— o0 for ze Dy, (2.34)
3o(z)t + 1 "

R,(z) = ;en(lﬁ(;)’k) (l + 0<1>> as n— oo for zeDy, (2.35)
3y, () + 1 "

2 . 1
Ey(z) = ——— "0 <1 + O(E)) as n— oo for zeD,. (2.36)

V3., () + 1

The Landau symbols O(-) in (2.33)~(2.36) hold uniformly on compact subsets of each of
the domains of definition of the asymptotic relations. The signs of the square roots are
assumed to be positive for real z.

Remarks. (1) From (2.8) and the definition of y by (2.5) and (2.6) we deduce that the
equation 3%(2)4 + 1 =0 has its only solutions at the four branch points zy, ..., z4.
From (2.27) it therefore follows that the square roots in (2.33)—(2.36) are analytic
and different from zero through out the domains D_;, Dy, Dy, and D, \{0}.

(2) In order to apply the asymptotic relations of Theorem 2.9, one has to calculate
the values ;(z) and h/*(z) for a given zeD;,j = —1,0,1, co. It has already been
mentioned in remarks to Lemma 2.6 and Definition 2.7 that this can be done very
efficiently by solving the cubic Eq. (2.11) with n({) replaced by z. The selection of the
right solution out of the three candidates depends on the domain D;. In
neighborhoods of z =0 and z = oo, the selection is clear, since the rules follow
immediately from conditions (2.24)—(2.26) in Definition 2.7. Throughout each
domain D; the selection can then be done by continuation, i.e., one follows a path
through the domain D;, and at each new value of z one selects the solution of
Eq. (2.11) that lies nearest to the previously selected one. Of course, in order that this
procedure works, consecutive points of z must not lie too far apart.

(3) Comparing the right-hand sides of the asymptotic relations (2.3) in Theorem
2.2 with the representations (2.31) and (2.32) of the functions 4;,j = —1,0,1, co0, in
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Theorem 2.8, one sees that the right-hand sides of relations (2.3) can be expressed
with the help of the functions /;. Since /; = Re hj,j = —1,0,1, it is immediate that

Theorem 2.2 is a corollary of Theorem 2.9.

2.5. Calculation of the arcs I'_ and of the measures v;

While the functions %, h7, and y;,j = —1,0, 1, c0, can be calculated very efficiently
by solving Eq. (2.11), we have up to now still not presented an efficient numerical
method for the calculation of the density functions of the measures v;,j =
—1,0,1, 00, and for the arcs I'_,I',To1,....,0 04,01, ..., 4 that form the
supports of these measures and also the boundaries of the domains D;. In the next

two theorems the numerical tools for such calculations are presented.

Theorem 2.10. Let the sets K;,j = —1,0,1, o0, be defined s in Lemma 2.6 with K_;
= F,I,KO = roou Uro4,K1 = Fl,Kw = l"wl U ... uFOO4,F00 = [—iyl,iyl], and
y1=0.621391.

(1) Out of the eleven Jordan arcs T _1,T'1,To1, ..., Toa, U0t ..., [T o4, the three arcs
', To1, Ty start at the branch point zy. There, these three arcs have the tangential
directions

@, =651/36, ¢, =41n/36, ¢, = 171/36, (2.37)
respectively. At the three other branch points z,, z3, and z4 one gets corresponding

results by symmetry for the three groups of arcs {I'_1,To2, T os2}, {T'-1,T03, T 03}, and
{I'1,To4, T na}. Hence, by (2.37) and its symmetric repetitions at the points z;, z3, za,

we have initial directions for all subarcs T'_y, ...,T 4. The interval T'og = [—iy1, iy1]
belongs not to this list, however, this poses no problems.
(i1) Let t,€0D denote the tangent to the arcs T _1,T'1,To1, ..., T04, T o1, ..., T oog at

the point z. Then we have

N cErACE
C= e ) P (239

RAEENE)

t, =+ m fOV zeF01 UF04, (239)
o . lﬁ_](Z) - l//oo(z>

t.= +i VREERE] for zeT' g U3, (2.40)

t. = ii% Jor zeT o1 UT 4, (2.41)

PR Y_i(2) = o(2) for zeT oy UT 03 (2.42)

ST @)
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with ;,j = —1,0,1, 00, denoting the functions introduced in Definition 2.7. At the
points z=1zy,...,z4 expressions (2.38)—(2.42) are undetermined, but the missing
information is supplied by (2.37) and its symmetric repetitions.

Remark. The initial directions given in (2.37) together with the formulae for the
tangent vectors given in (2.38)—(2.42) provide an efficient algorithm for the
calculation of the Jordan arcs I'_,I'|,To1,...,T 04, 01, ...,T 04 in an obvious
way. The calculation should always start at one of the four branch points z;,j =
1, ..., 4. Near each branch point, it is easy to select the two solutions y;(z) and ¥, (z)
that are relevant in (2.38)—(2.42) out of the three solutions of Eq. (2.11), since near
the branch points z;, the two relevant values are nearly identical and different from
the third one. Expressions (2.38)-(2.42) define a differential equation for the
numerical calculation of the arcs using the branch points as initial values.

Theorem 2.11. Let ds. denote the line element at a point z of the open subarcs of the
sets Kj,j = —1,0,1, oo, which have been defined as in Theorem 2.10 and in Lemma 2.6.

For the density functions of the measures v;,j = —1,0,1, co, introduced in Theorem
2.8, we have the representations

dvj 3

) =5 W (2) ~ ()| for ek, (243)

where ;. and \y;_ are the boundary values of ; from both sides of the open subarcs of
the sets K;.

For each je{—1,0,1, oo} the boundary values ;. and y;_ of {; are on each open
subarc of K; identical with two other functions y, and ,,, I\, lbe{—1,0,1, o }\{j}.

Considering individually the subarcs T _1,T,To0, ..., To4, To1y ..., T 0q of the sets
K;,j =—1,0,1, 00, as stated in Theorem 2.10, one then has the following more specific
representations for the density functions v;,j = —1,0,1, co:
dv_1 3
T =5 @)~ W ()] for zeT, (2.44)
dV] 3
0 =52 o(2) — Y ()] Sor zeT, (245)
" ; Wi(z) =¥, (2)]  for zelo1 Ul
D) =50 (@)~ ()] for zeTon = [=iy1, iy, (2.46)
W_1(z) =¥ (2)] for zeToaUTs,
dvoo(z) _ i{ W1(2) —o(2)]  for zelo, Uroo47. (2.47)
ds. 2n |y _(z) = o(z)] for zeT Ul o3,

Remarks. (1) Expressions (2.44)—(2.47) give nearly explicit representation for the
densities of the measures v_1, vg, vi, and v.,. For their calculation one only needs the
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values y,(z),/ = —1,0, 1, oo, which are the same as those used for the calculation of
the arcs in Theorem 2.10, and they are solutions of Eq. (2.11). It is recommended to
calculate the arcs I';., and the density functions of the measures v;,j = —1,0,1, oo,
simultaneously.

(2) In Theorem 2.8, representations for the measures v;,j = —1,0,1, oo, have
already been given by formula (2.30). However these representations contain normal
derivatives of the function 4, and therefore are not immediately suited for numerical
calculations.

3. Proofs, Part 1

In the present section we prove results that are concerned with the geometric side
of the problem, i.e., we prove the Lemmas 2.5, 2.6, and Theorem 2.8, where
the existence and specific properties of the arcs I';, of the measures v;, and
the functions hj,hj, ¥;,j =—1,0,1,00 have been stated. Further, we prove the
Theorems 2.10 and 2.11, which are concerned with the numerical calculation of the
arcs I';. and the measures v;. The asymptotic relations themselves will be proved in

Section 4.

3.1. Proof of Lemma 2.5

First, we shall show that the function /4 defined by (2.12) and (2.13) has
developments (2.14)—(2.17). This can be done by straightforward calculations.
Indeed, from (2.6) and (2.5) we deduce that the three branches of the function yor~!
near oo have the developments

1 1
Yor“i(z) = —1+—+ 0(;) as z— oo,

3z
1 1 1
Yoty (z) = 1 0<z3> as z— oo,
] 1 1
Yorty (z) = l—i—g—i— O(z—2> as z— o (3.1)

and near the origin we have

1
Yori ! (2) = 1 +0(z) as z—0 (3.2)
for the branch that corresponds to the point {,€Z. In (3.1) the ﬁj‘l,j =-1,0,1,
denote the three branches of n~' at infinity satisfying ;' (o0) = ol j=-1,0,1,
with a numbering of the points o0(/)e# as defined in the lemma. In (3.2) 7!
denotes the branch of n~! at the origin satisfying 7.!(0) = {y. Using (2.13)
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then yields
1
uoort”|(z) = =3z 4 logz + O(E) as z— oo,
1 . 1
uoyorty (z) =logz+log2 +in+ O 2) aszm o,
- 1
uyorty (z) =3z+logz+ O ~) asz—oo,
uoort ' (z) = 3logz + O(1) as z—0, (3.3)

from which it immediately follows that the function % possesses the developments
(2.14)—(2.17).

Let us now assume that / is a function harmonic in 2\{ o0, 0 © oM ¢} and
satisfying (2.14)~(2.17). Then the difference g := & — / is harmonic throughout %,
and from (2.14) it follows that g( oo (=) = 0. Since £ is a compact Riemann surface,
it follows that g = 0, which proves the lemma. O

3.2. Four useful lemmas

The next four lemmas pave the way for the proofs of Lemma 2.6 and Theorem 2.8.

For the derivative of the function uoy there exists a very nice and simple formula,
which turns out to be of key importance at several places. We state and prove it in
the next lemma.

Lemma 3.1. Let #~! be a local branch of the inverse projection n=" defined in a domain
Uc<C, then we have

(uepert™!)'(2) = 3ot ") (2) = 39 (0) (3.4)
for zeU,{ = &7 (z) e R, and u defined by (2.13).

Proof. From the chain rule it follows that

(oot ™)' (z) = (Yot~ )(2)) (et ™")'(2) = % (3-5)

with v = (). If on the right-hand side of (3.5) one uses for (zoyy ')’ (v) expression
(2.8) and the derivative «/(v) = —(3v* + 1)/(v(v? — 1)%), it then follows from (3.5)
that

(ueport™1)'(2) = 3, (3.6)
which proves (3.4). O

In the next lemma we consider properties of arcs I", on which branches of the
function / have identical values. We give explicit representations for the difference of
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the normal derivatives of / to both sides of these arcs. The results are basically local.
The global aspects of intersection arcs are studied in the Lemmas 3.3 and 3.5.

Lemma 3.2. Let Dy, Dy =% be two domains satisfying n(D;) = n(D,) =: D=C, and
let the projection m be univalent in each D;,j = 1,2. We define

hi=hei', w7 =), =12,

and
['={zeD|h(z) = hy(2)}. (3.7)

(i) The set T consists of disjoint, open, analytic Jordan arcs. Each open subarc T of
I can be extended in T" up to the boundary dD.

(ii) The complex number t.€T is a tangent vector to a subarc Ty =T at the point
zely if, and only if,

Relt:(yoity ! (2) — Yoty (2))] = 0. (3-8)

(iii) Let Ty be an oriented, open subarc of T, and let 9/0n, and 8/0n_ be the two
normal derivatives to the right and left side of Ty, respectively. Then we have

0 -~ a -~ N
—h1(2) + o ha(z) = 3Aert;  (2) — Yoty ' (2)|  for zeT, (3.9)
on, on_
where 2 is a constant equal to —1 or 1 for all zeTy on a subarc Ty of T'.
(iv) We have
0 0

ﬂhl(z)yéﬁhz(z) Sor all zeT\{zy, ...,z4}. (3.10)

Remarks. (1) We recall that the arcs in Fig. 3 are intersections of branches of the
function 4. In Fig. 3 at the points zy, ..., z4, iy1, —iy; We observe bifurcations. Why is
this no contradiction to assertion (i) in the lemma? Indeed, assertion (i) implies that
the intersection arcs of two branches of the function & cannot bifurcate in D.
However, it follows from the assumption in the lemma that the four branch points
z1, ..., z4 cannot lie in D since otherwise the projection = would not be univalent in
the domains D and D,. This settles the question for the points zy, ..., z4. At the two
points iy; and —iy; not only two, but three different branches of the function /4 are
involved. Each of the three arcs that meet at these two points in Fig. 3 can be
continued across the bifurcation point, but the continuations are invisible in Fig. 3
since they become irrelevant for the problem under investigation.

(2) In relation (3.10) the four branch points z, ..., z4 have been excluded explicitly.
But this was not really necessary since, as has already been explained in the last
remark, we have zj, ..., z4¢ D because of the assumed univalence of the projection =
in Dy and D;.
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Proof. From Lemma 3.1 we know that

(Wit ') (z) = 3oty '(z)  forall zeD, j=1,2. (3.11)
We define

d=h, — h, (3.12)
and deduce from (3.11) that

C%d(z) = Re(hot;! — h*ofts ') (z) = 3Re[phot; ! (2) — Yoty ! (2)], (3.13)

(%d(Z) = —Im(h* ety — oy ') (2) = =3 Im[orty ' (2) — Yoty | (2)]

for ze D.

Since it has been assumed that the projection = is univalent in the two domains D
and D», it follows that zj, ..., z4 ¢ D. Hence, it follows from (3.13) that dd/0x and
0d /0y cannot vanish at the same time at any point ze D, or in other words, the
function d has no critical points in the domain D. Assertion (i) therefore follows
from the Implicit Function Theorem.

Let Iy be an open, analytic subarc of I". Then # = 1. € T is a tangent vector to I’y at
the point ze T if, and only if,

0

Ed(z) =0. (3.14)
We have
%d(z) = Re(tz)é%d(z) + Im(lz)% d(z). (3.15)

Hence, relation (3.8) follows from (3.11) and (3.13)—(3.15).
Since the tangent vector ¢ and the two normal vectors ny are orthogonal, it
follows from (3.14) and (3.11) that

0 o 0 * ~—] * ~—1
Ed(z) = ‘82(/1 oy —h'fty )
=3|poit; ' (2) — Yoit, 1 (z)| for zeT. (3.16)

On the other hand, we have

ihN»(z) = fiﬂ(z) for zely, j=1,2 (3.17)

ony N7 on_ Y 0 J= 0 '
Relations (3.16) and (3.17) together yield that

ihN (z) —&—i}; (2)| = 3|poit;(z) — Yoty ()| for zeT (3.18)

3n+ 1 on_ 2 = 1 2 0, .

and from (3.18) we deduce relation (3.9). Thus, it only remains to show that the
factor / in (3.9) is constant on each subarc I'y of T".
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We know that the function d has no critical point in D. Therefore, it follows from
(3.12), (3.14), and zj, ..., z4 ¢ D that

0 J 0

any (2) = 8ni(h~1 (z) = ha(2))#0  for zeT. (3.19)

With identity (3.16) we see that %}; 1(z) — %h}(z) = %/{ 1(2) + 522 (z) cannot have
a sign change on any subarc I'y. This completes the proof of assertion (iii).

Since Iy is an arbitrary subarc of T, assertion (iv) is an immediate consequence of
(3.19. O

In a technical sense the next lemma forms the basis for the proof of Lemma 2.6
and also for the proof of Theorem 2.8.

Lemma 3.3. (i) There exist four Jordan arcs I ;,j =1, ..., 4, each contained in the
corresponding jth quadrant of C and connecting the branch point z; with . The arcs
are uniquely determined by the following two assumptions:

(o) Let Dy = C denote the domain C\(T o1 T 4) and 7" the branch function of the
inverse projection n~" in Dy that satisfies

port1(0) = \/1/3. (3.20)

It is assumed that the two arcs T o, and T o4 are chosen in such a way that the function

hy = hert7! can continuously be extended throughout C.
(B) Let D_ =C denote the domain C\(T .o UT 3) and #~} the branch function of
the inverse projection =" in D_, that satisfies

Yo7 (0) = —/1/3. (3.21)

As in assumption (o), it is again assumed that the two arcs T 5 and T 3 are chosen in
such a way that the function Iy = hort~} can continuously be extended throughout C.

(ii) Let Dy C denote the domain C\(T 1 U -+ UT 04) and 7iy" the branch function
of the inverse projection 1= in Dy that satisfies

Yoriy ' (0) = oo. (3.22)

If the two assumptions (o) and (B) are satisfied, then also the function hy = horiy! can
continuously be extended throughout C\{0}. The function hy has a logarithmic

singularity at the origin.
(iii) We have
1 1
glog2+0 ﬂ as |z| > o0 and zeT 1 UT 44,
z
Re(z) = (3.23)

1 1
_§lOg2+0<H> as |z| > oo and zeTl Ul 43.
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In a neighborhood D of infinity we have
ho(z) = hmax(z) for zeD, and further

ho(z) = max(—3 Re(z), 3 Re(z), log 2) + log |z| + 0<l) as |z| - oo,

121
1

h(z) = min( 3 Re(z),log2) + log|z| + O (|z

) as |z|- o0, j=-1,1,
(3.24)
with hymax defined in (2.18).

Definition 3.4. On the Riemann surface # three sheets B;,j = —1,0, 1, are defined in
the following way:

(i) Let D;, and 7%;1 ,j = —1,0,1, be the three domains and the corresponding three
branches of the inverse projection n~! in D; introduced in Lemma 3.3. Then the
domains ﬁj’l(Dj) S are the inner part of the three sheets B;, j = —1,0, 1.

(i) The pairs of domains (7,!(Dy),7;'(Dy)) and (#-1(D_1),7;'(Dy)) are
separated by two Jordan curves C,,; and C, _1, respectively. Pieces of these curves
are attributed to the neighboring sheets By, By and B_;, By in such a way that the
projection 7 is univalent on each sheet B;, j = —1,0, 1. It is immediate that such an
attribution is always possible.

Proof of Lemma 3.3. The defining property of the Jordan arcs I',;,/ =1, ...,4, is
the continuity of the three branch functions h},j = —1,0,1, of & across the arcs I' ;.
The function / has been introduced in Definition 2.7 via the v-plane C, which can
bijectively be mapped onto the Riemann surface % by . In the proof of existence for
the four Jordan arcs I'o;,/ = 1, ..., 4, we shall again recur to the v-plane, where we
shall define three domains G;,j = —1,0, 1, which, via the mapping mey !, correspond
to the domains D; introduced in the lemma.

Near infinity the situation is rather clear, and therefore we shall start with a local
consideration near that point. Let the U;,j = —1,0, 1, be three open neighborhoods
of the three points v = in the v-plane. We define D; = x//_l(Uj)Eg?, and assume
that n(ﬁj) =: D<C is identical for all three indices j = —1,0,1. As in (2.31), we

-

deduce from the developments (3.3) that the branch functions h~, = hoﬁj’l7 =

(n| D/,)_l, associated with the domains D; have the developments

~ 1
hi(z) = 3j Re(z) + log |z| + (1 —j*) log 2 + 0(—)

2]

as |z]—- oo for j=—1,0,1. (3.25)
From (3.25) it follows that near infinity the two arcs

UV = {zeD|hy(z) = h(2)}, j=—1,1, (3.26)
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are approximately equal to the two vertical lines 3 Re(z) = —log?2 and 3 Re(z) =
log 2.

Intersection curves of two branches of the function Aon~! like the arcs I'"! and T'!
have already been studied in Lemma 3.2, and from there we know that both arcs can
be continued analytically as long as they do not hit one of the four branch points
z1, ..., z4. We shall prove the existence of such continuations in a constructive way.
Besides of the existence of the arcs I',;,/ = 1, ..., 4, we also learn from this analysis
which arc T',; ends at which branch point zp, I'e {1, ...,4}.

The function ¥ ':C—2 is monotonically increasing on the three intervals
I =(-1,0), Iy = R\[~1,1],1; = (0,1), and it is immediate that each interval
I,j=-1,0,1, is mapped bijectively on R by Y~'. The points v; = {/—1/3,
I=1,...,4, are the only zeros of the derivative of !, as has been shown in (2.8),
and at the same time they are critical points of the function Re u. The function Re u
corresponds in the v-plane to the function 4 on £ (cf. Definition 2.4). The points
v,I =1, ..., 4, are the preimages y ' ({;) of the four branch points ;e Z,/ =1, ..., 4.

In the v-plane we define three disjoint domains G;, j = —1,0, 1, which possess the
following four properties:

(@) ;=G for j = —1,0,1.

(b) moy " is univalent in each domain Gj,j = —1,0, 1.

(C) G,I ) G()U Gl = @

(d) The set y = Ule 0G;j consists of analytic arcs. We have vy;ey,/ =1, ...,4, and

for each vey\{vy,...,v4} there exists a corresponding v’ ey\{vy, ...,v4} such that
v'#v and
wy ! (o) = mey ! (v), (3.27)
Re u(v') = Re u(v). (3.28)

The existence of the three domains G; will be proved by considering level curves of
the function Reu. But before we come to the construction of the domains G;, we
discuss the consequences of their existence. Set

D=y '(G) and "= (n|5)”" forj=—1,0,1. (3.29)

Then it follows from (3.27) and (3.28) in property (d) together with property (c) that
the two functions /; = hei;! = Reuoyperi; !, j = —1,1, can continuously be extended

throughout C, and the function /g = hofiy! = Reusperiy' can continuously be
extended throughout C\{0}. Assumptions (3.20)—(3.22) in the lemma are immediate
consequences of property (a). Thus, after the existence of the domains G;,j =
—1,0, 1, has been proved, it remains only to prove with respect to assertions (i) and
(ii)) of the lemma that the arcs I',;,/ =1,...,4, are uniquely determined and
that each arc is contained in a different quadrant of C.

Estimate (3.23) in assertion (iii) of the lemma is an immediate consequence of the
observations made after (3.26). Relations (3.24) follow from developments (3.25)
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together with a consideration of the function Reu on R in neighborhoods of the
three points v = —1,0, and 1.

We will now construct the three domains Gj,j = —1,0, 1. For this purpose we
consider the level lines

L.={veC\{-1,0,1} | Reu(v) =c}, ceR, (3.30)

of the function Reu in the v-plane. Pieces of these lines are plotted in Fig. 4. The
symmetry of the definition of the functions Reu and ! with respect to the x- and
the y-axis implies that the value ¢y e R of Re u is identical at all four critical points vy,
I =1, ...,4, and consequently all four points lie on the same level line L.,, which we
will call critical level line. Contrary to all other level lines L., ¢# ¢y, the critical level
line L, is connected.

Indeed, since the derivative #' has a simple zero at each of the four critical points
v, ] =1,...,4, exactly four subarcs of L, meet at each of these four points. The
function Reu is monotonic on each of the 6 intervals (—oo,—1), (—1,0), (0, 1),
(1, 0)=R, (—00,0), (0, 00)=iR, and therefore each interval contains exactly one
intersection point with L.,. The nature of the singularities of Re u at the two points
v = —1 and 1 implies that L, cuts the real axis R perpendicularly at each of the two
points v = —1 and 1. These observations together with the harmonicity of the
function Re u imply that L, consists of 8 subarcs, each one connecting two of the
four critical points v,/ = 1, ..., 4. The subarcs of L, in the first quadrant are shown
in Fig. 4.

The open set C\L,, consists of 6 domains, which we denote by Go, G, Gﬂj’,‘, Ji=
—1,1, and assume that the numeration is chosen in such a way that Oe Go,
c'e) eéoc, and jec’?GAj,,- for j,i = —1,1 (see Fig. 4, which, however, covers only the
case j=1). We have Reu(v)>c¢y for veGyu G_l,l U 6171, and Reu(v)<c¢y for
UEéw UGA_L_] UGA]’_l.

Fig. 4. The critical level line L, (thick line), two level lines L. with ¢ = ¢y + 0.4 and ¢ = ¢y + 0.8 (full thin
lines), two level lines L. with ¢ = ¢y — 0.4 and ¢y — 0.8 (dashed thin lines), and the curve y = y, Uy, (dotted
thick line). Only a part of the first quadrant is shown.
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The level lines L., ¢+# ¢y, consist of three components each, and in every case the
three components lie in three different components of C\L,,. For c¢<cy the level line
L. consists of the three components L‘f,L;l, and L! with L* = G being a quasi-
circle around v = oo, L] 'eG_,_y, and Llc GAl,,l being punctured quasi-circles
going through v = —1 and 1, respectively. By definition the points v = —1 and 1
should not belong to the two components L' and L!.

For ¢>c¢q the level line L. consists of the components L., L%, and L!. Now,
LY Gy is a quasi-circle around v =0, while L' =G, and L! =G, are again
punctured quasi-circles going through v = —1 and 1, respectively.

We first concentrate on the construction of the domain G, and will construct G,
as the union of subarcs of the level lines L, that intersect the interval (0, 1] = I; U {1}.
The point v = 1 has to be added to the open interval I; = (0, 1) since at v = 1 a whole
family of subarcs of the level lines L., c> ¢, intersects R perpendicularly. Only a
piece of each of these subarcs belongs to the domain Gj.

Let Uy and U, be the neighborhoods introduced before (3.25), and let T'! be the
arc introduced in (3.26). As before (3.25), we set ﬁ:j’l = (”|15/-)_] for j=0,1, and
define the two analytic arcs §; == woﬁj’l (T'!),j =0, 1, which are contained in Uy n Gy
and U; 1 (G u{1}), respectively. Indeed, this follows from the definition of Uj,j =
0,1, from (3.26), and the behavior of the function ey ! near the two points v = 0
and 1.

From the behavior of the function Re u in the neighborhoods of the two points
v=0 and 1, it further follows that for ¢>0 near infinity, there exist two points
0e0 €70, Vet €71, Im(vej) >0,/ = 0,1, such that

wey ! (veo) = 7oy (ve1) €T, (3.31)
e~ (veg) = meyp ! (Tey) €T (3.32)
Re u(v.o) = Reu(v.,) = c, (3.33)
Re u(Te9) = Reu(vcr) = c. (3.34)

Let L2 = LY denote the open subarcs of L? that connects the point v, with 7.5 and
intersects I; = (0, 1), and let further L! =L! denote the union of the two open,
disjoint subarcs of L! that connect the two points v,; and . with the point v = 1.
From the behavior of the two functions /iy and 4 near infinity, which we know from
(3.25), we can conclude that the two arcs ey~ (L) and oy~ (L)) are disjoined,

and further the closure 7oy~ (£9) Uneyy ™' (L) forms a Jordan curve A, in C. It
follows from (3.31)—(3.34) and the definition of the L~8 and E}, that the restrictions
h~0|n<¢f‘( i) and 7, |m//71( i) can be continuously extended to the curve A..

If the value ce R decreases, then the two points v, and 7, move on §; away from
the point v = 1, and the two points v, and 7,0 move on ) away from the point v = 0.
We will have a closer look in this process.
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The function Reu has no other critical points in C than the four points v,/ =
1, ...,4. With the same arguments as used in Lemma 3.2 and its proof, it follows that
the analytic arcs §;, j = 0, 1, can be extended without bifurcations as long as they do
not hit a critical point. Especially, the value ¢ can be decreased as long as ¢> cy.
During this process the four points v, T, Uc1, U¢1 lie on the prolongations of the two
arcs o and §;, and the two domains Gy, = L~9, and G4 =
monotonically.

1
d>c d>c Lc’ grow

In the limiting situation, when ¢\ ¢y, then the subarc EB converges to an open
subarc L~?0 of the critical level line L.,. This subarc f,go connects the two critical
points vy, v4 and intersects I; = (0, 1). The two subarcs of ]:i also converge to the
union L! of two open subarcs of the critical level line L,. This union consists of the
two open subarcs that connect the two critical points v; and v4 with the point v = 1.

Let us now consider the case ¢ <c¢y. Here, the situation is simpler, we have only to
use the component L! of the level line L.. This component is contained in the domain

Gy,-1, which has L0 ULl as boundary, and in the limiting situation ¢ 7 ¢, the arc L
converges to the arc LO uLl\{1}.
Finally, the domain G1 is deﬁned as
= J Llu |J@oL). (3.35)
c<cp c=q)
It is immediate that Gy is a domain and that /; =G. Let y;, j = 0,1, denote the
maximal extensions of the two arcs §;. It follows from the definitions of the arcs L/,
L0, and L! that
IG] = pyUy,. (3.36)
For each ¢> ¢y, there exists a one-to-one correspondence between the two points v,
U and the two points v., U, respectively. This correspondence satisfies the
relations (3.31)—(3.34), and consequently property (d) is satisfied by the domain Gj.
The construction of the subarcs L!, L% !, and the arcs y, and y, implies that also

properties (a) and (b) are satisfied by the domain G.
It follows from (3.33) and (3.34) that

wy ! (70) = 7y (7). (3.37)
Since Re(v;), Re(vs) €11, Im(v) <0, and Im(v4) >0, the two arcs
L1 = nolﬁil(Vo|{1m(u)<0}) and D'y = ﬂ°¢71(70|{rm(v)>0}) (3.38)

connect the two branch points z; = ey~ (v)) and z4 = noyy ' (vg) with infinity.
Thus, the properties (a), (b), and (d) are proved for the domain Gj.

The domain G_; is defined as the symmetric image of G| with respect to the
imaginary axis. The role of the points v; and v4 is taken over by v, and v;3, and
the index value j = 1 has to be changed to j = —1 everywhere. Correspondingly,
the properties (a), (b), and (d) are also true for the domain G_;. Since
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Re(v2),Re(v3) el i, Im(v2) <0, and Im(v3) >0, the two arcs
[o =y (G- n{Im(v) <0})

and
I3 =ny (G| n{Im(v)>0}) (3.39)
connect the two branch points z, = ey~ (13) and z3 = ey ™! (v3) with infinity.
It will be shown below that G; " G_; = . Having this result in mind, we define
Gy = C\(GiuG). (3.40)

The properties (a), (b), and (d) carry over from the domains G; and G_; to the
domain Gy. Property (c) follows immediately from (3.40). Thus, it remains only to
show that the two domains G| and G_; are, indeed, disjoint.

It follows from the developments in (3.25) that I'' is the only arc in a
neighborhood D<= C of infinity on which the function i1 has identical values from
both sides. (We assume here that Iy is initially defined on R.) In the neighborhood D
of infinity, we have I'' = (I',,; Ul .4) " D. Thus, the arcs ', and I' 4 are uniquely
determined in D. From Lemma 3.2 we then know that the continuations of the two
arcs I' o1 and T4 are without bifurcation until a branch point is hit for the first
time. Since the continuations are analytic arcs, the uniqueness of the complete arcs
I'w1 and I' 4 is proved. The uniqueness of the two arcs I' ;5 and I' 3 introduced in
(3.39) is a consequence of the symmetry.

In order to prove GinG_; = (), we consider the difference d = hb - };1 on the
imaginary axis /R. From the developments (3.25) we learn that d(+io0) = log 2, and
from (2.17) in Lemma 2.5 that d(0) = —oo. Below we shall show that

%d(iy)>0 for y>0, yeR. (3.41)
From (3.41) and the values of d at 0 and oo, it follows that the difference d has
exactly one zero on the positive imaginary half-axis iR, . By symmetry, there exists
another zero on the negative imaginary half-axis iR_.

If the arc T ,;\{oo} were not contained in the first quadrant
{zeC | Re(z) >0,Im(z) >0}, then the difference d would have more than one zero
on iR, i.e., several different zeros or at least one double zero. Since d(z) = 0 for all
zel 4 \{oo}, such a case would contradict the strong monotonicity (3.41).
Consequently, it is impossible, it is proved that I";;\{oo} is contained in the first
quadrant. By symmetry the analogous conclusions hold true for the three other arcs
'yl =2,3,4. As a consequence, we see that Gy G_; = §.

In order to prove (3.41) we deduce as in (3.13) from Lemma 3.1 that

0

aiyd(iy) :a%(}fo(iy) — (iv))

= —Im (%(h*oﬁgl — h*oﬁl‘l)(iy)) = —3Im(d — 6)) (3.42)
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with point @y, ) eC defined by &; = lpoﬁ]fl(iy),j: —1,0,1. Let us assume y>0.
Then we have ¢y €iR_ and Im(¢;) <0 for j = —1, 1. From the definition of the ¢; and
from (2.5) and (2.6) we know that

B-1/3 #-1/3

0= mU o) =m0 = S TR o)
or

(6 = 1/3)61 (6 = 1) = (& = 1/3)do(v§ = 1) = 0. (3.44)
Polynomial (3.44) can be divided by the linear factor (4, — &), which yields

(1 — 62) + 2608 — (1 — 363)67 = 0. (3.45)

With the parametrization ¢y = iz, we then have
it 1 V1132138
5, =0, (it) = ———+——— /1 2434 4
vy = 1 (it) 1+312+1+3t2 + 3£ + 3¢ (3.46)
From (3.46) and (3.42) we then deduce that

Oty = 31— — Y = L0 for y=0 (3.47)
ay = 14+32) 1+32 r=u ’

The last inequality holds since we have Im(dy) = #<0 for y > 0. With the verification
of inequality (3.41) the proof of Lemma 3.3 is complete. [

In the next lemma we introduce arcs which will be building blocks for the system
of arcs appearing in Lemma 2.6.

Lemma 3.5. (i) Let hAj and ﬁj‘l ,J = —1,0,1, be the functions introduced in Lemma 3.3.
The set

Noi = {zeC |hy(z) = hi(2)} (3.48)

consists of three analytic arcs, which we denote by T,k = 1,2,3. Each of these three
arcs connects the two branch points z\ and z4 in C. The arcs are disjoint in ([_I\{Z] 24}
The arc T'yy intersects R in (0, 00 ). The arc Ty intersects R in (—c0,0), and it has two
intersection points {—iyy,iy1 }, y1 >0, with iR. The third arc T3 intersects R at infinity.
There are no other intersection points with R or iR, and we have T'j3 = T o1 UT o4,
where I o1 and I 4 are the arcs that have been introduced in Lemma 3.3.

(i1) At the branch point z; the three arcs T,k = 1,2,3, have tangential directions

@, = 651/36, @, =41n/36, ¢;=171/36, (3.49)
respectively. At the branch point z4 a symmetric result holds true.
(iii) The open set C\Ny; consists of three components, which are denoted by D(lj ), j=
—1,0,1. The domain D(IO) contains the origin, the domain D<171) lies to the left of Ny,
and the domain Dg” to the right of Nyi. We have

ho(z)<hi(z) for ze D\, (3.50)
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ho(z)>h\(z) for zeDYl) uD(ll) (3.51)
and

h_y(z)<h\(z) for Re(z)>0. (3.52)
Remarks. (1) Besides of the set Ny, we shall also use the set No_; == {zeC |l£0(z) =

h_1(z)} in the proof of Lemma 2.6. Since Ny, is the symmetric image of Ny, with
respect to the imaginary axis, all definitions made in Lemma 3.5 can be carried over
to the symmetric situation.

(2) The three arcs I'yx, k = 1,2, 3, are plotted in Fig. 5.

Proof. We first prove inequality (3.52). Set H, = {zeC | Re(z)>0}. From (3.24) in
Lemma 3.3 together with developments (3.25) in the proof of Lemma 3.3, we deduce

that the function /1, is superharmonic in a neighborhood of infinity. From assertion

(iii) in Lemma 3.2, we then deduce that the function /; remains superharmonic along
the whole arc I',; UT 4, 1.€., the sign of 1 in (3.9) cannot change on I' ,; UT 4. As

a consequence we see that Iy is superharmonic in C. On the other hand the function

hi_y is harmonic in H,. From the symmetry between the two functions /4, and /_; it
follows that

hi(z) =h_i(z) for zeiR. (3.53)

1 [sltime>0, =T
iy,
Y >
0.5 1
0
=04
-0.5
'iYI/
-t o] =T
13l {m(2)y< 0= T 4

-0.75 -0.5 -0.25 0 0.25 0.5 0.75

Fig. 5. The three arcs I'y;(=T), T'12(=T_1), and T'j3(= T'o1 Ul ,4) of the set Ny, defined in Lemma

3.5, together with three domains Difl), D(lo)7 and D(ll). (The arc I'j3 and the two domains DYI) and DEI) are
only partially shown. The two arcs I'y; and T'o4 are the subarcs of 'y, that connect the point iy; with z; and
the point —iy; with z4, respectively.)
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Let D be a neighborhood of infinity. From the third line in (3.24) of Lemma 3.3 we
deduce that

hi(z)=h_(z) for zeDnH,. (3.54)

The superharmonicity and the harmonicity of iy and h_y together with (3.53) and
(3.54) imply inequality (3.52).

From the properties of the two functions ho and /1, established in Lemma 3.3 it
follows that the difference d = i;o — };_1 is harmonic in C\(T'o;; U - UT 4 U {0}).
From Lemma 3.3 we further know that

d(z)=0 for zel', Ul 4. (3.55)
Next we show that

d(z)>0 for zel' Ul 3. (3.56)

Indeed, it follows from Lemma 3.3 that /’;()(Z) =h (z) for zeT o, UT 3. Because of
the symmetry between iy and h_; with respect to the imaginary axis, we
have hy(z) —h_1(z) = h_1(—2) — h(—=2) for zeC. Inequality (3.56) then follows
from (3.52).

From (2.17) in Lemma 2.5 we know that /(0) = —co. Since 4, is bounded at the
origin, it follows that

d(0) = — 0. (3.57)

We define D§0> = {zeC|d(z)<0}. Because of (3.57) we have OeDg()). Since d is
harmonic in C\(I's; U -+ U4 U {0}) and subharmonic at z = 0, from (3.55) and
(3.56) it follows that the domain D\” is simply connected and @D\” is a Jordan
curve. From (3.55), (3.56), and the fact that the arcs I' 1, ..., [ 4 cannot bifurcate,

it further follows that z, z4 eE)D(lO) and z;, z3 ¢8D(10). Let I'y; and I'y, denote the two

subarcs of aDEO) that connect the two points z; and z4 in 6‘D(10).
It has been shown by (3.41) in the proof of Lemma 3.3 that the function d is

monotonic on each of the two imaginary half-axis iR, and iR_. Consequently, 8D<10>
has exactly one intersection point on each half-axis, we denote these two points by
—iy; and iy, y;1>0. In an analogous way it can be shown that the function d is
monotonic on each of the two half-axis R, and R_. The proof is even simpler since
in the new situation the two points ¢y and ¢} in formula (3.42) are both real. From

the monotonicity of d on R, and R_ it follows that 8D(10) has exactly one intersection
point on each half-axis. It is geometrically immediate that one of the two arcs I'j;
and I'; intersects iR in —iy; and iy, and at the same time R in (—00,0), we denote
this arc by I'j. The other one is denoted by I'y;, and it intersects R in (0, 00).

From (3.55) together with what we have shown so far the assertions of part (i) and
inequalities (3.50) and (3.51) follow. Thus, it remains only to show that (3.49) holds
true.
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The two functions / and 4 share the branch point at z;. For both functions we
have the development

hi(z) =1 (2 +logd) + 34 Re(e ™4 (z — 1))
+ Re(ei(z—21)")+ 0(z—21)") as z-z, (3.58)
j =0, 1, with the coefficient ¢; in the third term given by
) = +V/8373/8e71/24, (3.59)
The two signs in (3.59) distinguish between hy and hy. We have h = Reh* and

h; = hei;!' = Re h*oi; !, j = 0,1. In order to prove (3.58) we derive from (3.4) in
Lemma 3.1 that

(1 Y (@) =30er; 2)
=3y +C—21(z—zl)1/2+0(z—zl) as z—z (3.60)

with v = 3'/4¢="/* and the constant ¢; given in (3.59). The last equality in (3.60),
and especially expression (3.59) follow from (2.5) by straightforward calculations.
The development (3.58) then follows from (3.60) by integration.

Development (3.58) can be rewritten as

- , 1 1
hi(z1 + re'?) 21(2 + log §> + 334 cos(p — n/4)

3 5
+v/8373/813/2 cos (5 ®— ﬁ) +0(*) as r—0, (3.61)
j=0,1. From definition (3.48) it follows that along the tangential directions of the
three subarcs I';, k = 1,2, 3, the second cosine term in (3.61) has to vanish. Hence,
for the tangential angles ¢;, k = 1,2, 3, we have

3 Sn
cos (5 O — ﬁ) =0 fork=1,2,3, (3.62)
which implies that
St w2k
(pk—%—Fg—‘r?TC fOI'k—l,2,37 (363)

and this proves (3.49). Note that the association of individual angles ¢;,k = 1,2, 3,
with the three arcs I'y; follows from the global structure of the arcs shown
in Fig. 4. [

3.3. Proof of Lemma 2.6
The existence and certain properties of the subarcs of the set I' are proved in a

constructive way by showing the connections between the function /A,y defined in
(2.18) and the branch functions ﬁj,j = —1,0,1, of honr~! which have been defined in
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Lemma 3.3 and are associated with the sheets B;,j= —1,0,1, introduced in
Definition 3.4.

Besides of the set Ny; of (3.48) we also use the set Ny | = {zeC| ho(z) = h_y(2)},
which has already been mentioned in Remark 1 to Lemma 3.5. This set is the
symmetric image of Ny with respect to reflection on the imaginary axis. Like Ny, it
consists of three Jordan arcs, which we denote by I'_;;,k=1,2,3, and which
connect the two branch points z, and z3 in C. The three components of C\N, | are
denoted by D(_j])7 j=—1,0,1, and the numeration is taken in such a way that under
reflection on the imaginary axis the I'_y;,I'_;»,I'_; 3 correspond to I'y;, o, I3,
and the D(:ll),D(f)f,D(Jl) to Dgl),DEO),D(fl), respectively. We further define H, =
{zeC|Re(z)>0} and H_ := {zeC|Re(z) <0}.

From (3.50)—~(3.52) in Lemma 3.5 we deduce that in the half-plane H, we have

/’lmax(Z) = { ]/;1 (Z) for ZGDEO) ﬂH+,

. (3.64)
ho(z) for zeD\" u(D\™ ~H,).

Because of the symmetry properties with respect to the imaginary axis, in H_ we
have

h_ f DV ~H_
hm,lx(z)—{ () for zeDy” N -, (3.65)

- ho(z)  for zeD&]l)u(Dgme,).

From Lemma 3.5 and the symmetry properties we learn that i[R{mD(_Ol) = i[RmDEO) =

[—iy1, iy1]. Because of symmetry we also have I (z) = hA,l(z) for zeiR. From (3.52)
in Lemma 3.5 it then follows that the function /i,y is equal to lfl on the right side of

[—iy1, iy1], and equal to /iy on the left side of [—iy1, iy1]. Hence, the function /i,y is
not harmonic in any neighborhood of any point of [—iy;,iy;]. The situation is

different in iR\[—iyy, iy1], where /i,y is represented by ho on both sides. From (3.64)
and (3.65) we therefore deduce that

hi(z) for zeDg0> NH,,
hnax(2) = { hy(z)  for zeC\D\” D", (3.66)
hA,l(z) for zeD(f)me,.

From Lemma 3.3 we know that /iy is harmonic in C\(Tpiu---ulya0{0}), and
it is not harmonic in any neighborhood of a point ze ', U -+ UT .4 U {0}. In (3.66)

the singularity of /i at the origin z = 0 plays no role since there the two functions /1,
and h_; are larger than ho. The open arcs I'o,)\{z;, 0},/ =1, ---,4, are, however,

fully contained in C\ng uD(i)f. From (3.66) we therefore deduce that /i,y is not
harmonic in any neighborhood of points zeT",; U --- U 4. We define

K@ = Fw1U~~~UFm4. (367)
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Since Ay is different from /), in D§0> N H,, and different from iy in D(BI) NH_, it
follows from (3.66) that Ay, is not harmonic in any neighborhood of points

42 (8D(10) NH U (8D(f)f NH_). The set I" in Lemma 2.6 can therefore be represented
as

r=kK,ud(D"~H,)uo(D" ~nH_). (3.68)

In (3.68) the interval [—iy;,iy] is covered twice. We have
a(D\" A H,) =T Ul UTosU[iy1, 1] (3.69)

with I'y =TI'1; and Iy, g4 the two subarcs of I'; that connect the two branch
points z; and z4 with iy; and —iy;, respectively. The arcs I'1;, kK = 1,2, 3, have been
introduced in Lemma 3.5. Symmetrically to (3.69) we have

DY) AH_)=T_ uTuTs Uiy, ] (3.70)
with I'_; :==T"_;; and I'p2, I3 the two subarcs of I'_; , that connect the two branch
points z; and z3 with iy; and —iy;, respectively. If we define

KO = F01u-~u1"04u[—iy17iy1], (371)

then the assertions (i)—(iv) of Lemma 2.6 are proved.

The numerical value (2.22) for y; has been calculated by a procedure based on
Theorem 2.10.

The harmonicity of the function /iy, in C\I" immediately follows from (3.66) and
the properties of the branch functions h},j = —1,0,1, established in Lemma 3.3.
From there it also follows that if one crosses one of the subarcs of I', then the
harmonic continuation of &, is always different from /%« on the other side of the
subarc. Therefore A,,x cannot be harmonic in any neighborhood of points zeT".

It has already been mentioned before Lemma 2.6 that representation (2.19) of /pax
follows from the general theory of potential theory. As a maximum of harmonic
functions, the function /Ay, has to be subharmonic (cf. [18, Chapter 2]), and
representation (2.19) itself is an immediate consequence of the Poisson—Jensen
formula (cf. [18, Theorem 4.5.1]). O

3.4. Proof of Theorem 2.8

We shall use the same notations as in the proof of Lemma 2.6. The functions
hj,j = —1,0,1, oo, which have been introduced in Definition 2.7, will be represented

by pieces of the functions }Z,, j=—1,0,1, introduced in Lemma 3.3. The verification
of representations (2.31) and (2.32) will take a central place in the proof.
We start with the investigation of the function /,. By definition, this function is

harmonic in C\I'y. The arc I'; separates the two domains D(lo) and D(ll). We show
that

hi(z) = (3.72)

~

ho(z) for zeDgl),
hi(z) for zeC\Dgl).
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Indeed, let /i, denote the right-hand side of (3.72). From the introduction of the
functions I;O and };1 in Lemma 3.3 we know that /;0 1s the harmonic continuation of l;]

across the open arc (I' ;1 U 4)\{z1, z4} and vice versa. Therefore Ay is harmonic on
(Fo1UTl a)\{z1,24}. From development (2.16) in Lemma 2.5 together with the

(1)

second estimate of (3.24) in Lemma 3.3 we conclude that 7, =y in D}’ in a

neighborhood of infinity. Hence, at infinity the function /, has the development
hi(z) = 3 Re(z) + log |z| + 0<| |) as |z|— oo, (3.73)

which shows that the difference of the functions /; and /h; of Definition 2.7 is

harmonic in a neighborhood of infinity. Since /; has an harmonic extension to the
whole domain C\I'y, it follows that (3.72) holds true.

Comparing (3.72) with (3.64) shows that /i, = A in D ) and (D >mH+). Thus,
the two functions h; and /hy, are identical in a nelghborhood of the open arc
I'\{z1,z4}. From this and representation (2.19), together with (2.28), it then follows
that

hy(2) = hoy(2) +/log|z—x| dvy (x), (3.74)

where ﬁa is a function harmonic in C. A comparison of (3.74) with (3.73) then
further implies that

In(z) = 3 Re(z /10g|z—x|dv1() (3.75)

and
[l =1, (3.76)
which proves representation (2.31) for j =1, and further shows that v; is a
probability measure.
In an identical way representation (2.31) can be proved for j = —1, and in the

same way it is shown that v_; is a probability measure. In this part of the proof we
have to verify that

ho(z) for zeD Y,
@ =1, -
hi(z) for zeC\D',

instead of (3.72).
The function /Ay is harmonic in C\Kjy. The set K, separates the four domains

D" ~H,, DY) AH_, DIV ~D") ~{Im(z) >0}, and D\ A D"} A {Im(z) <0}. We
shall show that

hi(z) for zeD(ll)u(DEO)mH+),
hy(z) = }fo(z) for zeDEfl) mD(_l?
h_y(z) for zeD(:ll) u(D(f)me,).

(3.77)

(3.78)

)
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Indeed, let /1y denote the right-hand side of (3.78). It then follows again from the
introduction of the three functions h}-, j=—1,0,1,in Lemma 3.3 that the function ho
can be harmonically continued across the open arcs I',\{z;, 0}, /=1, ..., 4. Since

(01)7 it follows again from

I'y separates D(ll) from D(lo) and I'_; separates D<__1]) from D
the introduction of the three functions hAﬁj = —1,0,1, in Lemma 3.3 that /i, can also
be harmonically continued across the two open arcs I'|\{z1,z4} and T'_;\{z2,z3}.

With this observation and definition (3.71) we see that the function 7 has an
harmonic extension to the whole domain C\Kj.
From development (2.15) in Lemma 2.5 and from (3.51) in Lemma 3.5 we

conclude that /1y = hy in Dgfl)ngl) in a neighborhood of infinity. Hence, the
function /4 has the development

- 1
ho(z) =log2 + log |z| + 0(—) as |z| > 0, (3.79)

2]

which shows that in a neighborhood of infinity the function A is identical with the

function /g of Definition 2.7. Since /iy has an harmonic extension to C\Kj, it follows
that (3.78) holds true.
From (2.28) and representation (2.19) it then follows that

ho(z2) = hoo(2) + / log |z — x| dvo(x), (3.80)

where i;(;) is a function harmonic in C. A comparison of (3.80) with (3.79) implies
that

ho(z) =log2 + /log |z — x| dvo(x) (3.81)

and

lvol| = 1, (3.82)
which proves representation (2.31) for j =0 and further that vy is a probability
measure.

From Lemma 3.3 and (3.67) we know that 4 is harmonic in C\(K. u{0}). From
(2.17) in Lemma 2.5 and from the introduction of /1, in Definition 2.7 we derive that

/’le is identical with /., in a neighborhood of the origin z = 0. Since the function };0 is
harmonic throughout D, \{0} = C\(K,, u{0}), it follows that

ho(z) = ho(z) for zeC\K,,. (3.83)

From (2.17) in Lemma 2.5 we further learn that at the origin the function /., has a
logarithmic singularity with residue 3. From (3.50) and (3.83) we conclude that

hax (2) = ho (z)  for zeC\(K., uD\” LDY)). (3.84)

As a consequence, it follows from (2.29) and representation (2.19) that all
singularities of the function 4., except the one at the origin, are represented by
the positive measure v,,. With this knowledge we see that an application of the
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Poisson—Jensen Formula to the function /., yields representation (2.32). We note
that —log |R(z — t)/(R? — fz)| is the Green function g(z,¢) in the disc {|z|<R}.

From the second estimate in (3.24) in Lemma 3.3, representation (2.32), and
definition (2.20) of the function /g, we deduce that

2 2

, 1 R — ||
lim |hg(z) —logR—— max(—3 Re(?),log(2),3 Re(t)) ————
dm Jha(@) —log R = p | max(=3 Re(n).log(2).3Rel0) " — 5

=0 (3.85)

locally uniformly for ze C. Indeed, from the second estimate of (3.24) and (3.83) we
know that

dle|

hy(z) =log R+ max(—3 Re(7),log (2),3 Re(¢)) + 0(%)

as R—0 and |z] = R, (3.86)

which together with the properties of the Poisson kernel and (2.20) proves (3.85).

Limit (3.85) together with representation (2.32) and definition (2.4) of the function
h(vy;-) shows that h,, = h(vy;-), which proves assertion (iii) in Theorem 2.8.

Next, we derive representations (2.30) of the density functions dv;/ds of the four
measures v;,j = —1,0,1, c0. In order to have a more concrete notation we first
consider the case j = 1. The function /; has harmonic continuations from both sides
of the open arc I'1\{zy, z4}. By /1. and /;_ we denote the boundary values of /; from
both sides of I'|\{z,z4}, and by 9/0n, and 0/0n_ the corresponding normal
derivatives. From the Green formula and representation (2.31) it follows that the
measure v is given by

1|0 0

E %h]+(z) +8}’17_h17(2)

where ds is the line element on I';. Indeed, let G D; be a domain with smooth
boundary, and let 9/9n denote the normal derivatives to dG. Set g;(t) == hi(t) —
3Re(?), g2(?) :=log|z — 1], 1€ G. From the Green formula we then know that

991 99> B
7[{)0 {592 —4q1 W] (1) ds, =0, (3-88)

which yields

dvi(z) =

ds,, zely, (3.87)

g1(z) = ¢ +% - %(t) log |z — ¢| ds; (3.89)
with ¢ == (g2 — ¢1)(o0). If the domain G= D, is extended so that it exhausts the
domain Dy, then a comparison of (3.89) with representation (2.31) yields (3.87).

In an analogous way we can derive representations for the density functions of the
three measures vy, v_;, and v.,. In the cases of the measures vy and v, , the analogues
to formula (3.87) do not operate on a single arc, but on all subarcs of the sets K; and
K, as stated in (3.71) and (3.67). The technical details should cause no difficulties.

From representation (2.32) together with the behavior of the function %, in a
neighborhood of infinity, as has been shown in the second estimate of (3.24) in



H. Stahl | Journal of Approximation Theory 125 (2003) 238-294 275

Lemma 3.3, we conclude that the measure v,, has to have infinite mass, which
proves (2.29).

In assertion (i) of Theorem 2.8 it is stated that the four measures v;,j =
—1,0,1, oo, which have been defined in (2.28) with the help of representation (2.19)
of the function /y,,y, are identical with the measures that appear in the Theorems 2.1
and 2.2. This fact can only be proved in Section 4, when the proofs of the Theorems
2.1,2.2, and 2.8 have been completed. The proof then follows in a simple and natural
way. We note that in the proofs of Section 4 it is assumed that the four measures
v;,j =—1,0,1, 00, are defined by (2.28) and representation (2.19), which is an
analytic definition independent of the asymptotics considered in the Theorems 2.1
and 2.2. O

3.5. Proof of Theorem 2.10

The tangential directions (2.37) have already been proved in (3.49) of Lemma 3.5.
Thus, it remains only to prove formulae (2.38)—(2.42).

Form Lemma 2.6 we know that T'\{zy, ...,z4, iy, —iy;, 00} consists of open,
analytic Jordan arcs. In order to have concrete notations, we first concentrate on the
subarc T'j<I'. Let 9/0¢ denote the tangential derivatives along I')\{zj,z4},7 =
t.eJD the tangent vector at zel'|\{zi,z4}, and A the branch function of the
function son~! introduced in Definition 2.7, which is harmonic in the domain D; =
C\I";. As in the proof of Theorem 2.8 by A, and A;_ we denote the boundary values
of h; from both sides of I'y.

From Definition 2.7 and Lemma 2.6 we know that the open arc I'1\{zy,z4} is
contained in the domain Dy and also in the domain D.,. We deduce from (3.72) and
(3.83) on one side, and from (3.72) and (3.78) on the other side that

hi(z) =ho(z) and hi_(z) = ho(z) for all zeT'|\{z1,z4}. (3.90)

Since /14 (z) = hy_(z) for zeT'y, formula (2.38) then follows directly from (3.90) and
assertion (ii) of Lemma 3.2 for all zeT'1\{zy,z4}.

For the other subarcs of I'\{zy, ..., z4, iy;, —iy1, o0 } the corresponding formulae in
(2.39)—(2.42) can be derived in exactly the same way, only that the identities in (3.90)
have to be modified in an appropriate way. [

3.6. Proof of Theorem 2.11

Like formulae (2.38)—(2.42) of Theorem 2.10 followed from assertion (i) of
Lemma 3.2, so formulae (2.44)—(2.47) of Theorem 2.11 analogously follow from
assertion (iii) of Lemma 3.2 together with representations (2.30) in Theorem 2.8. [
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4. Proofs, Part 11

In the present and last section we prove the key result of the paper, which is
Theorem 2.9. Theorems 2.1 and 2.2 belong to the same circle of problems, but they
are practically corollaries of Theorem 2.9, and their proofs will be rather short.

4.1. The saddle point method

The main tool in the proof of Theorem 2.9 is the saddle point method, which we
formulate in the next theorem in a slightly specialized version, which is adapted to
the needs of our analysis.

Theorem 4.1 (Saddle Point Theorem). Let the integral I,, be of the form
I = / 9(0)G(v)" db, (4.1)
r

and assume that its elements, i.e., the two functions g, G, and the integration path T’
depend on a parameter z. We make the following specific assumptions:

(1) The parameter z is assumed to vary in an open set V<C.

(i1) There exists a family I' =T, ze V', of Jordan arcs or Jordan curves. For each
zeV apoint {y = {y. €' is singled out. If . is a Jordan arc, then { . is assumed to be
an inner point of I'.. The arcs or curves I'. and the points {, . are assumed to depend
continuously on z for ze V.

(i) For each zeV the functions g = g(-,z) and G = G(-,z) are assumed to be
analytic in an open neighborhood U of T.. We assume that g({o) = g({o..,2z) #0 and
that

G (o 2)|> |G, 2)| for all LeT:\{E:}- (4.2)

The functions g and G are assumed to depend continuously on zeV, but the
neighborhood U is assumed to be fixed, i.e., we consider the same neighborhood U for
all ze V.

(iv) For each ze V the function G(-,z) is assumed to have a non-degenerated critical
point at (o, i.e., G'((o) = 0G (-, 2)/00 = 0 and G"(Ly) = *G(Ly .z, 2) /O #0.
Under these assumptions we have the estimate

I, =\ /%%{%)Q(CO)G(CO)” (1 + 0(%)) as n— oo (4.3)

for integral (4.1) with the sign of the square root chosen in such a way that

—2nG (o)
nG”(C())
In (4.4) dt;, denotes the tangential line element on I' at the point {, and it has to have

the same orientation as used in integral (4.1). (Because of assumption (4.2), such a
choice of the sign is always possible.) By O(-) we denote Landau’s symbol ‘big ol’, and

arg — arg(dty,) <g. (4.4)
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in (4.3) the symbol holds uniformly for parameter values z varying on compact subsets

of V.

A discussion of the saddle point method can be found in [17] or [25, Chapter 2].
The theorem stated here is special in so far, as we consider only non-degenerated
critical points (i.e., proper saddle points) and the precision of the asymptotic estimate
(4.3) takes into account only the first term in a possible development in powers of
1/n. In the proofs given in [17,25], it can be verified rather easily that the continuous
dependence on ze V' of all elements in (4.1) implies the uniformity of the Landau
symbol in (4.3).

For the application of the saddle point method in the proof of Theorem 2.9 we
need several preliminary transformations and definitions. Among them an
appropriate definition of the integration paths C;,j = —1,0,1, 00, in integrals
(1.9)—(1.12) is of great importance.

4.2. Transformation of the integral representations

Representations (1.9)—(1.12) suggest that we have to study the asymptotic
behavior of the integral

- 1pn+l 3nzv g
I, = n. 7{ v r forn— oo (4.5)
2ri3mnt Jo v+l (02 — 1)

with C one of the four integration paths Cj,j = —1,0,1, oo, introduced in (1.9)-
(1.12). We can assume that the four integration paths C; are Jordan curves, the first
three are positively, and the last one is negatively oriented. We have
Int(C))n{-1,0,1} = {j} for j = —1,0,1, and Int(C,,)2{-1,0,1}.

Cauchy s Theorem guarantees large freedom for the choice of the curves C;,j =
—1,0,1, co. In order to apply the saddle point method successfully, the curves have
to be chosen in a rather specific way. This problem will be addressed in the next
Section 4.3. Here, we rewrite integral (4.5) in a way that allows connections with the
definitions of the Riemann surface # and the functions  and /4 that have been
introduced in Definitions 2.3 and 2.4 and have been studied intensively in Section 3.

By using Stirling’s formula

nl = n”e"\/27m<1 + 0<111)) as n— oo (4.6)

the quotient n!/n" in (4.5) can be rewritten, and we arrive at the integral

n 37— 1+log(2/3) dv
W] ey -

which because of (4.6) satisfies the relation

j;:l,,<l+0<%>) as n— oo. (4.8)
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In (4.7) C denotes one of the four integration paths C;,j = —1,0,1, co, that have
already been used in integral (4.5). We will analyze integral (4.7) somewhat further.
A comparison of (4.7) with (4.1) leads to the following definitions:

e3zv71+10g(2/3)

G(v) = G(v,z2) = e ) (4.9)
with

a.(v) =3zv—1+ logﬁ (4.10)
and

g(v) = Wﬁ_ﬁl) (4.11)

The function G depends on z as external parameter, while the function g is
independent of z. In most of the analysis that follows, the parameter ze C can be
considered as fixed.

A point v = v, €C is a critical point of G if

2 _
G (v) = G(v)d.(v) = G(v) (32 - LB) —0, (4.12)

or equivalently if zo(v? — 1) — v* + 1/3 = 0, which is exactly Eq. (2.11). Via (2.5) this
equation is linked with the definitions of the Riemann surface # and the mapping
Y : #— C in Definition 2.3.

For zeC\{z1, ..., z4} equation (2.11) has three different solutions, which for the
moment will be denoted by ugl),l =1,2,3. (Below, we shall introduce a different
numeration.) The solutions v§1> depend on z, and from (2.11), (2.5), and (2.6) we

know that the vgl) are preimages of the point z under the function meyy~!, ie.,
function (2.5). Indeed, from the definition of the function s in (2.6) it follows that

{0, 0,0} = yor' ({2}). (4.13)

If ze{zi, ..., z4}, then two of the three elements in the set on the left-hand side of
(4.13) coincide. For z¢{zj, ..., z4} all three critical points vgl),l =1,2,3, are simple

solutions of Eq. (4.12), and therefore it follows that G”(vgl)) #0for/=1,2,3. In case
of ze{zi, ..., z4}, the set contains one simple and one double solution of Eq. (4.12).
Let vgl) denote the simple and vf-z) the double solution, then we have G”(vf-l)) #0 and

G" (ng)) = 0. As consequence the following lemma holds true.

Lemma 4.2. If z¢{z\,...,z4}, then all three critical points vﬁ-/),l =1,2,3, are non-

degenerated. If ze{zy, ..., za}, then there exist only two different critical points vg),

[ =1,2. One is degenerated and the other one is non-degenerated.
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Next, we consider the value of the function Re a.(v) at critical points v = W1 =

1,2,3. We deduce from (4.10) and (4.12) that

) (3(D)2
(hy _ b= (3(v") )_ 2
az<17; ) - vz])((vgl))z _ 1 +10g 3U§-l> vgl))z _ 1)
_2 Uy)>2 +lo 2
1 %% D@2 =1

=u(ol), 1=1,2,3, (4.14)

where u is the function introduced in (2.13) of Definition 2.4. Thus, it follows from
the definition of the function /: 2 — R in (2.12) that

Rea.(v) = Reu(v) = h(¢), 1=1,2,3, (4.15)

with { € # chosen from the three points of 7~ !({z}) in such a way that y({) = o,
From (4.15) we learn that the function / introduced in Definition 2.4 is equal to
log |G(v)] if v = o) is a critical point. The values, which are assumed by G at the
critical points, have great significance in the saddle point method. For the use in this
method it will turn out to be preferable to choose a numeration of the critical points

vgl),l =1,2,3, that corresponds to the definition of the branch functions ; and
hj,j = —1,0,1, co, of the multi-valued functions yorn~! and hon~!, respectively, that
have been introduced in Definition 2.7. These branch functions correspond to the
four domains D;,j = —1,0, 1, co, that have also been introduced in Definition 2.7.

Definition 4.3. Let i,/ = —1,0,1, oo, be the branch functions introduced in (2.25)
of Definition 2.7. Let further zeD;,j = —1,0,1, co, then from the three critical
points in (4.13) we denote that point ugl) as v; = v; that is equal to ,(2), i.e., we

define

vz =y;(z), j=-10,1,00. (4.16)

Remark. We learn from (4.13) that all critical points of G for a given z are preimages
of the multi-valued function 7o', and therefore also preimages of the branch
functions ;. If zeC\{z1, ..., 24}, then exactly three of points (4.16) are different. If
z¢K_juU--- UK, then the point z is covered by all four domains D;,j = —1,0,1, o,
and formally we have four critical points v; . in (4.16). Of these four points only three
are different. We note that from Remark 2 to Definition 2.7 we know that
{z1,...,za}nD; =0 for all j = —1,0,1, co.

Identity (4.15) is reformulated in the following lemma with the new numeration of
critical points that has been introduced in (4.16).
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Lemma 4.4. With each critical point v;.,j = —1,0,1, 00, is associated the value c; :
= Rea.(v;.) as the critical level at v;.. We have

Rea.(v;;) = hj(z) for zeD;, j=-1,0,1, 0, (4.17)

with h; the functions introduced in Definition 2.7.

4.3. Definition of the integration paths C;

In the Lemmas 4.5 and 4.6 we shall prove the existence of integration paths
C;,j=—1,0,1, c0, for integral (4.7) with properties that are appropriate for the
saddle point method.

Pieces of the integration paths will be level lines of the harmonic function Re a.(-)
introduced in (4.10). For ceR and zeC, we denote the system of curves

L.=L..={veC|Rea,(v) =c} (4.18)
as level lines, and the sets
M.=M.. = {veC|Rea.(v)>c} (4.19)

as the filled in level lines of the harmonic function Rea,(-). The curves L. are
different from those introduced in (3.30) and were used only localy in the proof of
Lemma 3.3. At this earlier place the function Reu has been used at the pace of
Re a.(v) in (4.18) and (4.19). Both definitions should not be mixed up.

Lemma 4.5. For ze C\{0} and ceR sufficiently large, the following three assertions
hold true:

(1) Each of the two sets L. and M, consists of four components Lﬁj ) and Méj ), j=
—1,0,1, o0, respectively. The numeration can be chosen in such a way that

jeM) and LY =M forj=—-1,0,1, 0. (4.20)
(i1) Each of the three components ng), j=-1,0,1, is an analytic Jordan curve,
approximately equal to a small ellipsis surrounding the point v =j. With a positive

orientation the curve LY can be taken as integration path C; in integral (4.7).

(ii)) Let R>1 be chosen so that all critical points (4.16) are contained in {|z| <R}.

Then the contour L\*® = O({|v|=R} UML(,OO)) is a piece-wise analytic Jordan curve

having oo in its exterior and the set {—1,0,1} in its interior. With a negative

orientation the curve LE,OO’R) can be taken as integration path C, in integral (4.7).

If z=0 and ceR again sufficiently large, then the two sets L. and M. have only
three components; the components LE,m and ML(,M are missing. For the remaining three

components ng ), j=—1,0,1, assertion (ii) and relation (4.20) holds true.
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Proof. The equation Re a.(v) = cin (4.18) can be rewritten with the help of (4.10) as

2
= —3Re(zv) + 1+ log§+ c. (4.21)

log |1
& v(v? — 1)

The left-hand side of (4.21) is a rather simply constructed potential in the v-plane
with logarithmic singularities at the three points v = —1,0, 1. The right-hand side of
(4.21) is a real linear function depending on the parameter ze C and the constant
ceR.

If z+0, then assertion (i) follows immediately from the structure of both sides of
(4.21). Also assertion (ii) follows directly from (4.21) since for z fixed and ceR

sufficiently large, it is not difficult to see that the components LE" ) approximately are

small ellipses around the points v =j = —1,0, 1.
In order to verify assertion (iii) we introduce the new independent variable

U defined by d:=v/c. Tt then follows from (4.21) that the sets Mﬁ.oc) =
{6eC | cde M!™)} converge to the set M = {#eC|3Re(zi)>1} if ¢ tends to
infinity. Assertion (iii) follows directly from the simple structure of the set M.

If z = 0, then the right-hand side of (4.21) is constant, and the conclusions in the
lemma are immediate. [

The curves LE:j) defined in Lemma 4.5 are admissible as integration paths for
integral (4.7), but they do not satisfy the requirements of the saddle point method
since condition (4.2) is not satisfied. However, modifications are possible that result

in curves with the required properties. The curve ng ) has to be pushed downwards

)

by lowering ceR until LY hits a critical point for the first time. At this stage a

merger of some of the components of the set M, takes place. If one pushes L@
slightly further, then after some local modifications one arrives at a curve that has
the desired properties. Details of this procedure will be given in the proof of the next

lemma.

Lemma 4.6. We choose je{—1,0,1, 00 },zeD;, and in case of j = co we assume that
z#0. Let G be the function introduced in (4.9). The following three assertions hold true:
(i) There exists a piece-wise analytic Jordan curve C; = C;., which is admissible as
integration path in integral (4.7).
(i) The critical point v; = v;. defined in (4.16) lies on C;, and we have

G())|>[G(v)] for all ze Cy\{vj}. (4.22)

(i) Both, the curve C;. and the critical point v;. depend continuously on the
parameter z.

Proof. We start by defining and considering critical curves. Then we show in an
auxiliary lemma, how the critical points are associated with the critical curves. At
last we show how the critical curve can be modified so that inequality (4.22) holds
true.
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If ce R is large, then we know from Lemma 4.5 that the curves LE,I), [=-1,0,1, and
also the curve LE%’R) for R sufficiently large, are small in the cordal metric, and we can

assume that no critical points lie on these curves. The curves vary continuously with the

parameter z, and each component M, C(/), [ =-1,0,1, oo, of M. grows monotonically if ¢
is moved downwards. At some value ¢; = ¢;. € R, the curve LY or LI in case of
j = o0, hits a critical point for the first time. This critical point is denoted by ;. and
called critical point of first contact (for j), and further the value ¢ is called critical level.
At the critical level ¢ = ¢; the connectivity of the set M. changes. We define

M;=M,. = U M) in case of je{-1,0,1},

c>¢
and
M, =M, .={]zZ[>R}u U M™) in case of j = . (4.23)
>3

Here, R>1 is the same constant as introduced in part (iii) of Lemma 4.5. The critical
curve 1:]- is defined as

Ej = Ej,z = 81‘2] (424)

It is immediate that the curves Lg.j ), or Lﬁ.m"R) in case of j = oo, converge to the

critical curve L; if ¢ tends to ¢ from above. The curve L; is piece-wise analytic, and it
is a Jordan curve. The next lemma gives informations about the association between
the critical points and the critical curve Ej.

Lemma 4.7. Let v; = v;. = {;(z),z€D;, be the critical point introduced in (4.9) of
Definition 4.3, and ¢; = ¢;. = Re a-(vj:) = hj(z) the critical level introduced in Lemma
4.4. We have

Uj’; = 17/‘,; (425)

and

Gz = Cjz- (4.26)
The critical curve L; = L; - contains exactly one critical point, which is v; -, i.e., we have

vieeli-SLs., &.=h(z). (4.27)

2 =

Lemma 4.7 will be proved below after we have finished the proof of Lemma 4.6.
In a neighborhood U; of the critical point v; we define the two Green lines y;, =
Vj+ o> € D;, of the harmonic function Rea.(-) by the properties that

Ima.(v) = Ima.(v;) for vey;,,

Rea.(s { >Rea(v;) for vey, \{v}, (428)

<Rea.(v;) for vey; \{v}.
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Since Re a.(+) is harmonic in U; and has a non-degenerated critical point at v;, it is
immediate that the two Green lines 7, are well defined. They are analytic Jordan
arcs, and both arcs intersect orthogonally at the point v;.

From Lemma 4.7 we know that there exists exactly one critical point v;e L;. If ¢>0
is sufficiently small, then the set M., contains exactly the same critical points as the
set M., and the Green line V- divides the set M, into at least two parts like it
divides the neighborhood U; of v;. Note that from (4.28) we know that the Green line
7;— is downward showing, i.e., the function Re a.(-) is monotonically decreasing on
7, as the argument moves away from v;. By Mj‘é we denote the component of
Int(M;\y; ) that satisfies the relation M;< M;,.

We next show that with an appropriate orientation the contour 8M]~,( can be taken
as the integration path C; in integral (4.7). Indeed, 8]\7[]-,5 is a piece-wise analytic
Jordan curve, which consists of a piece of the level line L., and a piece of the Green
line 7;_. Hence, it is rather immediate from the construction of M; and M;, that the

contour 62\2_,-‘é is an admissible integration path C;. From (4.28) and the definition of
the level line L. in (4.18) we deduce that

|G(v)] =e97¢ for veLcj_EmﬁM_,"(,
e <|G(v)|<e¥ for ve(y;_ NOM; )\{v;},
|G(vj)] = e9. (4.29)

Inequality (4.22) follows from (4.29). The continuous dependence of ¢; = ¢;. and
v; = vj- on the parameter z follows from the fact that the critical point v;. is non-
degenerated, and also from the analytic character of all elements in the definitions of
the curve C; = C;. and the critical point v;.. [

Proof of Lemma 4.7. For the given je{—1,0, 1, o0} and ze D;, we first prove the two
relations (4.25) and (4.26), and then we show that the critical curve f,j contains only
one critical point, which is v; .

From the definition of the domain D; in Lemma 3.3, it follows that ze D; implies
z¢{zi1,...,z4}. Therefore we know that among the four critical points v,/ =
—1,0,1, oo, introduced in (4.16) of Definition 4.3 there are exactly three pair-wise
distinct ones, and each critical point is non-degenerated. From Definition 4.3 and
Lemma 4.5 it follows immediately that the critical points v; .,/ = —1,0, 1, co, depend
analytically, and the critical levels ¢;.,/ = —1,0,1, co, depend harmonically on
zeD;. As a consequence we know that also the critical point of first contact ¢ . and
the corresponding critical level ¢;. introduced in the proof of Lemma 4.6 depend
analytically and harmonically on z as long as there is no exchange of critical points
of first contact #; - at some point z. Such a change, however, is only possible if at the
point z, where it takes place, the critical curve L~j contains at least two critical points.

First, we consider the situation that zeD; lies near infinity and j# co. From
(4.16) and the properties of the functions ,(z),/ = —1,0,1, oo, established in
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Definition 2.7, it follows that for z sufficiently close to infinity the critical point v; .
lies near the point v =1, I = —1,0, 1. Since the curve Lgﬁ is a small quasi-circle
around v = j for ¢ ¢ ., it follows that v; . is the critical point of first contact ;.. This
proves the two identities (4.25) and (4.26) for z near oo and j# co.

If ze D; lies near infinity and j = oo, then among the three critical points v; .,/ =
—1,0, 1, the critical point of first contact 7, ., is the point with the greatest critical
level ¢; .. In the proof of Theorem 2.8, and there especially in (3.84) and the identities
leading to (3.84), it has been shown that we have Ay = hmax = (A1, ho,h1) in a
neighborhood of infinity, and that among the three values /;(z),/ = —1,0, 1, there is
a unique maximum near infinity for all ze D.,. With (4.16) it therefore follows that
Vo - = hoy (2) is the critical point of first contact ¢, ., which proves (4.25) and (4.26)
for z near oo and j = o0.

Next, we consider the situation that ze D; lies near to the origin, but z#0. The
function Re a.(-) then has the two critical points v_; . and v; . near the two points
—+/1/3 and \/1/_3, respectively, and a third critical point v, . near infinity.

It follows from the simple structure of the function Re «,(-) that if j# oo, then the
critical point of first contact 7. has to be one of the two points v_; . and vy .. The
critical level ¢; . is bounded away from — oo for all z in a neighborhood of the origin.
From (3.72), (3.77), and (3.78) in the proof of Theorem 2.8 we know that /y(z) =
h_1(z) for z close to the origin and Re(z) <0, and hy(z) = h(z) for z close to the
origin and Re(z)>0.

In case of z near 0 and j = oo, the critical point of first contact ¢, . is identical
with the critical point v, . that is lying close to infinity. From (2.32) in Theorem 2.8
it follows that in this case the critical level ¢, . = h (v ) tends to — oo if z tends to
0.

From the observations in the last two paragraphs we conclude that identities
(4.25) and (4.26) hold true for z close to the origin. Further, we have shown that only
in case of j = oo the values ¢;. = h;(v;-) tend to — oo if z tends to 0.

It remains to show that the two identities (4.25) and (4.26) hold for all ze D;. From
earlier conclusions we know that as long as there is no change from one critical point
of first contact to another one at a certain z, the critical level ¢. is a harmonic
function of ze D;, and the critical point of first contact #; . is an analytic function of
z. Since an exchange of critical points of first contact can only happen if at some
point z the two critical points involved in the exchange are simultaneously contained
in the critical curve [;=1L;., and have therefore the same critical level.
Consequently, the critical level ¢ is a continuous function of z, even if there is an
exchange of critical points. Hence, an exchange can happen only if at points zeC,
where different branches of the multivalued function son~! have identical values. We

conclude that at least for all z in the open set D defined by
D = {zeC|card(hon ' ({z})) = 3} (4.30)

the critical level ¢;. is a harmonic function of z, and it is continuous for all zeC in
case of j# oo, and for all ze C\{0} in case of j = o0.
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For ze D; near infinity and near the origin we know that identity (4.25) holds true.
We use the informations from Lemma 3.5 together with some conclusions from the
proof of Theorem 2.8 for checking which continuations of the critical level ¢ as
function of z are possible and compatible with the property of continuity in C, or
C\{0}, and harmonicity in D. The continuation is starting from a neighborhood of
infinity. It then turns out that indeed identity (4.25) has two hold for all ze D; and
any choice of je {—1,0,1, co }. This immediately implies identity (4.26) for all ze D;.

Thus, for instance, in case of j = 1 it follows from Lemma 3.5 in combination with
(3.72) that there exist in principle only two possibilities for the continuation of the
critical level ¢ . starting from a neighborhood of infinity. One is the function /;
defined by (3.72), and the other one can be defined by

() = ho(z) for zeDgl) UDEO), (431)
hi(z) for zetlj\Dg1> uDEO)

with 7 and A being the same functions as that used in (3.72). Since % is not
bounded from below at the origin, there is a conflict with our earlier observation
about the boundedness of ¢ - from below for z in a neighborhood of the origin, and
therefore the only possible continuation is /;, which proves identity (4.25) for the
case j = 1. Identity (4.26) is an immediate consequence.

The same conclusion follows for the case j = —1 by symmetry. For the cases j = 0
and oo identity (4.25) can be proved in an analogous way. The situation is even
slightly simpler; instead of (3.72) one has now to use (3.78) and (3.83) from the proof
of Theorem 2.8.

It remains to show that the critical curve f,j,z contains only one critical point for all
zeD;. It follows immediately from the definition of D in (4.30) that this assertion is
true for all ze D. For zeDj\ﬁ we shall prove the same assertion indirectly. Let us
assume that there exists zo€ D;\D, j; € {—1,0, 1, o0 }, such that the critical curve L, .,
contains at least to different critical points vy, ;, and vy, -,,j€{—1,0,1, 0}, /» #Ji,
and zoe D; n D;,. We define

d = hjl — hjz' (432)
Since d(zp) = 0, it follows from Lemma 3.2 that there exist an open, analytic Jordan

arc T with zgeT, d(z) = 0 for all zeT, and

(%d(zo) £0 (4.33)

with 9/0n is the normal derivative with respect to the arc I". From (4.33) it follows
that in any neighborhood U< D; nD;, of z; there exist two points zi,z,€ U such
that

hjl (Zl) = 5]1;1 <hjz(zl) = Ejz-zl
and
h.il (22) =Gz >h./'z (22) =Cpoe (4'34)
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From (4.34) we conclude that neither v;, . nor vy, . can remain a critical point of
first contact on Ejl - if the point z crosses I at zo. Hence, the critical level ¢}, - cannot
be a harmonic function at z = zy. This contradicts our assumption that zope D;, and
identity (4.26), which we have already proved. The contradiction proves the last part
of the lemma.

We add the remark that the proof of the last part of the lemma has shown that a
critical curve L;, can contain more than one critical point only if ze dD;. Since we
know from Theorem 2.8 that the function /; is not harmonic at each point ze 9D,
we also can conclude that for each ze dD; the critical curve L; . contains at least two
different critical points. [

4.4. Proof of Theorem 2.9

Starting point of the proof is the representation of the three polynomials
P,, 0., R,, and the remainder term E, by integrals (1.9)—(1.12). The asymptotic
relations (2.33)—(2.36) will be proved by applying the saddle point method to
integrals (1.9)—(1.12), and using the integration paths C;,j = —1,0, 1, co, introduced
in Lemma 4.6, and the transformations of the integrals introduced in Section 4.2.

All four asymptotic relations (2.33)—(2.36) are of similar structure. We first
consider relation (2.33), i.e., the asymptotic relation for the Hermite-Padé
polynomial P,. The three other relations will be proved in a very analogous way.

We set j .= —1 and assume that ze D_;. From representation (1.9) and relation (4.8)
together with the definition of the two integrals (4.5) and (4.7), we deduce that
. 1
P,(2) = &I, = &1, (1 + 0<n>) as n— co. (4.35)

Landau’s symbol in (4.35) holds uniformly for z varying in compact subsets of D_;.

Let the functions ¢, G, and Re a.(-) be defined as in (4.9)(4.11) and let C_; =
C_;. be the integration path introduced in Lemma 4.6. Then the integral I,
introduced in (4.7) has the form

I = /C G0 v (4.36)

which is exactly the form (4.1) that has been assumed in the Saddle Point Theorem.

Let V= D_; be an open neighborhood of the point z. From Lemma 4.6 it follows
that assumption (ii) in the Saddle Point Theorem 4.1 is satisfied for all curves
C_, -,z €V, of Lemma 4.6. The critical points v_; .-,z € V', take over the role of the
points {, = (o »,z' €V, in the formulation of the Saddle Point Theorem 4.1.

From (4.22) in Lemma 4.6 we know that condition (4.2) holds true. The analyticity
requirements in (iii) are satisfied if we take U := D_;. Thus, assumption (iii) of the
Saddle Point Theorem 4.1 is also satisfied.

From Lemma 4.2 together with (4.9), (4.10), and (4.12) we deduce that also
assumption (iv) of the Saddle Point Theorem 4.1 is satisfied.
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After the check of the assumptions we know that Theorem 4.1 can be applied to
integral (4.36), and from (4.3) we deduce that

I, =+ %ﬁﬁ];)g(vl)G(vl)” (l + 0(%)) as n— oo (4.37)

with a Landau symbol O(1/n) that holds uniformly for z varying on compact subset
of D_;. From (4.12) we deduce that

G'(v) = G(v)[d.(v)’ + d!(v)], (4.38)
4
1
d!(v) = LJ’Z (4.39)
) (2 — 1)
Notice that z is kept fixed. For the critical point v_; = v_; . we have
d.(v_1) =0. (4.40)

From (4.38)-(4.39), and (4.40), it follows that
30, +1
2y, - 1)

Next we simplify the expressions in (4.37). From identities (4.41), (4.16), and (4.11)
it follows that

G//(Ufl) = G(U,I) (441)

—21G(v_y) —2m* (0%, — 1)

nG"(v_y)  n 3t +1

_ —2n ‘/’—1(2)2(‘#—1(2)2 - 1)2 (4.42)
n W) 1 '
—iv2n —iv2n
) = = : 4.43
M) = 0, =) VA GOW A = 1) .
—2nG(v_y) +2
2O )y = (4.44)
nG' () S W, (o) + 1

From (4.17) in Lemma 4.4 and the introduction of the function A*, as the
analytically completed form of /_; in Definition 2.7, we conclude that

a-(v_y.)=h",(z), zeD_. (4.45)
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Inserting identities (4.44) and (4.45) in the asymptotic relation (4.37) and using
(4.35) yields

P(s) =22 G(u_l,z)”<1 + 0(%))

\/ 3 ()t +1

+2 ()43 1
- _(+3) (1 + 0(;)) as n— . (4.46)

\/ 3, (2)* + 1

From (2.14) in Lemma 2.5 and from (3.1) in the proof of Lemma 2.5 we know that

1
h*(z) = =3z +logz + 0(;) as z— o0, (4.47)

V_(z)=—-1+4 O<%) as z— 0. (4.48)

Since P, is monic, it follows from (4.47) and (4.48) that in (4.46) the plus sign has to
be chosen, which proves the asymptotic relation (2.33).

The three other asymptotic relations (2.34)—(2.36) in the theorem can be proved in
a nearly identical way as relation (2.33). Instead of relation (4.35) we have to use the
relations

On(2) = Ino (1 + O(%)) R,(2) = eI, (1 + 0(%))
E,(z) =1, (1 + O<%)> for n— (4.49)

with integrals 1,; = 1,;(z),j = 0,1, oo, defined as in (4.36), but now the integration
paths C; = Cj., j=0,1, 0, are used instead of the integration path C_;. The new
paths have also been introduced in Lemma 4.6. In all other parts of the analysis one
follows identical patterns. The necessary modifications should cause no difficul-
ties. [

4.5. Proof of Theorem 2.2

In Remark 1 to Theorem 2.9 it has already been mentioned that the expressions

31#_/-(2)4 + 1 are analytic and different from zero for all ze D; and j = —1,0, 1, .

Hence, from the asymptotic estimates (2.33)—(2.36) in Theorem 2.9 we immediately
conclude that

n

1 1
Zlog |Pu(z)| = h_i(z) + 3 Re(z) + 0( ) as n— oo, zeD_y, (4.50)
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%log|Qn(z)| = ho(z) +log2 + 0(;) as n— oo, zeDy, (4.51)
1 1

Elog |Ru(z)| = hi(z) + 3 Re(z) + 0(;) as n— o0,ze Dy, (4.52)
1 1

;log |E,(2)| =ho(z) + O ) asn-ooo, z€Dy. (4.53)

As in Theorem 2.9 so also here the Landau symbols O(-) hold uniformly on compact
subsets of the domains for which the corresponding asymptotic estimates are
defined. In the derivation of (4.50)—-(4.53) from (2.33)—(2.36) we have used &; =

Re hj’f,j = —1,0,1, oo, which follows immediately from Definition 2.7.
From Theorem 2.8 we know that

D; = C\supp(v;) for j=-1,0,1, 0. (4.54)

Using representations (2.31) from Theorem 2.8, we can rewrite (4.50)—(4.52) as

1 1
Zlog |P,(2)| = /log |z —t]dv_i(t) + O(Z) as n— oo, zeD_y, (4.55)

%log|Qn(z)| :10g2+/log |z — 1] dvo(t)+0<rll> as n— o0, zeDy, (4.56)

1log|Rn(z)| :/log |z — ¢ dvl(t)+0<l) as n— o0, zeDy, (4.57)
n n

which hold with the same Landau symbols O(-) as those used in (4.50)—(4.53). The
first three limits in (2.3) then follow immediately from (4.55)—(4.57) together
with (4.54).

From assertion (iii) of Theorem 2.8 we know that /,, = h(v.;-). Hence, we can
deduce from (4.53) and (4.54) that

%log |E.(2)| =h(ve;2) + 0(%) as n— o0, zeC\(supp(vy, )U{0}), (4.58)

where again the Landau symbol O(-) holds uniformly on compact subsets of the
domain C\(supp(v,,)u{0}). From (4.58) the fourth limit in (2.3) follows
immediately. [

4.6. Proof of Theorem 2.1

We start by considering the first limit in (2.2). In (1.7) the polynomials P, have
been assumed to be monic and of exact degree n. The admissibility of this
assumption has been justified by the perfectness of the exponential function, which
has been shown in [15]. At this late stage of our investigation we can justify this
assumption for n sufficiently large also by the asymptotic estimate (2.33) in
Theorem 2.9.
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It has already been mentioned in the proof of Theorem 2.2 that the expression

\/3¢_1(z)4 + 1 is different from zero for all ze D_;. It therefore follows from the

asymptotic relation (2.33) in Theorem 2.9 that all zeros of the polynomials P, cluster
on the arc I'_y = 9D_; if n— co. Let Z(P,) denote the (multi-)set of all zeros of P,,.
Then we have

o0

N U z@wer-. (4.59)

n=1 m=n
Because of (4.59) the sequence {%VP”};O:I of probability measures is compact with
respect to the weak convergence of measures (Helly’s Selection Theorem, cf. [19,
Theorem 1.3]). Let v* | denote a cluster point of the sequence {1vp }~, and assume
that N<=N is an infinite subsequence with

1 x
Ve, = v, asmn—o0, nen. (4.60)

From (4.59) it follows that supp(v*,)<=I'_;. We have

1 1

Elog |Py(2)| = ;/ log |z — | dvp,(2). (4.61)
From (4.61), limit (4.60), and the first limit in (2.3) of Theorem 2.2 it follows that

/log |z —t|dv® (¢) = /log |z—t|dv_i(¢) for zeD_;. (4.62)

Since supp(v*,) €9D_y, it is a standard conclusion from potential theory (Carleson’s
Unicity Theorem. cf. [19, Theorem 4.13]) that identity (4.62) implies that

Vvii=v_|. 4.63
| (

The measure v_; is independent of the subsequence NV, and consequently limit (4.60)
holds for the full sequence {%v P, }neq» Which together with (4.63) proves the first limit
in (2.2).

The third limit in (2.2) follows in exactly in the same way as the first one, only the
role of the measures v; and v_; has to be interchanged. We note that the polynomials
R, are the image of the polynomials P, under reflections on the imaginary axis,
which implies that the polynomials R, are all monic and of exact degree n.

The polynomials Q, are not monic. If in representation (1.10) we replace ¢¥"** by
its power series and apply the residue theorem to the integral in (1.10), then for the

leading coefficient in 0, we get (—2)"™', i.e., we have
0u(2) = (-2 4 (4.64)

As done before (4.59) so we can also here conclude that all zeros of the polynomials
0, cluster on the set Kj if n— oo, and we have a relation analogous to (4.59) with
I'_; replaced by Kj. The sequence {%VQ},?: , of positive measures is compact with
respect to weak convergence. Let v; be a cluster point of this sequence, then there
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exists an infinite subsequence N =N such that
1
~vg,— vy asn— oo, neN. (4.65)
n

We have supp(vj) € Ko. From (4.64), (4.65), and the second limit in (2.3) of Theorem
2.2 it then follows that

/log |z —t| dvy(t) = /log |z —t|dvo(t) for zeDy. (4.66)
With the same arguments as used after (4.62) it then follows from (4.66) that
Vo = Vo, (4.67)

from which the second limit in (2.2) follows.

It remains to prove that also the fourth limit in (2.2) holds true. Here,
the procedure is more involved since the support of the measure v, is
unbounded, its mass is infinite, and the remainder term E, has infinitely many
zeros. As in representations (2.4) and (2.32) we confine our investigations to disks
{lz|<R}.

Let R>0 be chosen arbitrary, but sufficiently large so that
I'_juKyul'ic{|z|<R}. By Z(E,,R) we denote the (multi-) set of zeros of the
remainder term E, in {|z| <R}, by vg, g the corresponding zero counting measure,
and by

b(z) =[] Riz=x) (4.68)

2 _ -
xeZ(Ey.R) R — 5z

the Blaschke product in {|z| <R} that has the same zeros as E, in {|z| <R}.

From Remark 2 to Definition 2.7 we know that the three domains D_;, Dy, and D,
all cover the circle {|z| = R}. Therefore, it follows from the first three limits in (2.3)
of Theorem 2.2, from the definition of E, in (1.6), from (2.18), and from (3.84) that
for any €>0 there exists nype N such that

Llog |, ()< (1+ Q) max(h1(2),Jo(2), In(2)
=(1+¢e)hy(z) for|z| =R and n=ne. (4.69)

From (4.68) and (4.69) we see that the functions {/E,(z)/b,(z) form a normal family
in {|z]<R}.

From the asymptotic estimate (2.36) in Theorem 2.9 it follows that all zeros of the
remainder term E, in {|z| <R} cluster on the set (Ko, n{|z|<R})u{0} if n— c0. Let
v, g be a cluster point of the sequence {}vg, r},-; of positive measures. We then
have supp(vi, ) {0} U (K, n{|z|<R}). At this stage we do not know whether
v*w’ z 1s of finite mass, but we can conclude, as in Helly’s Selection Theorem, that
there exists an infinite subsequence N =N such that

1 x
— Vg, R—V, g asn— o, neN. (4.70)
no" )
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From Montel’s theorem we know that we can choose the subsequence N =N in such
a way that besides of (4.70) also the limit

1 1 R(z—1t
HloxlB,(2) - 1 [ 1ox =)

n R2— 7z

lim sup
n—ooneN

v, (1) = o1 (471)

exists locally uniformly in {|z| < R}. It is immediate that the function ¢ is harmonic in
{|z] < R}. From the upper bound (4.69) and the behavior of b, in a neighborhood of
{|z| = R} we conclude that

limsup g(z')<hy,(z) for |z| =R, (4.72)

2 >z|Z/|[<R
which together with the definition of the function /g in (2.20) implies that
g(z)<hg(z) for |z]<R. (4.73)
From (4.70), (4.71), the fourth limit in (2.3) of Theorem 2.2, and (4.73) we conclude

that
dv', w(t) =ho (2) — g(2)

R(z—1)
/log’ R — 7z
> ho(z)—hgr(z) for ze({|z|]<R} D, )\{0}. (4.74)

From representation (2.32) in Theorem 2.8 we know that

R(z — z
(heo — hr)(2) = /I<Rlog ‘ R<2 — t‘tz) dve, (1) +3 log‘—R| for |z]<R. (4.75)
Putting (4.74) and (4.75) together yields
(hr = 9)(2) = (heo (2) — 9(2)) = (heo (2) — hr(2))
R(z —
- / log ’ﬁ d(vV'y g = Vool < ry — 300)(0) (4.76)

for ze({|z|<R}nD)\{0}. Since the left-hand side of (4.76) is harmonic in
{|z| <R}, it follows from the right-hand side of (4.76) that

Ve Rl{z1<ry = Voo l{z1<ry T 300- (4.77)

From the arbitrariness of the constant R and from the fact that the right-hand side of
(4.77) is independent of the subsequence N = N, we conclude that limit (4.70) holds
in the form

1 %

—VE R—™ Vo
n

ny

{lz|<R} + 35() as n— oo, (478)
which proves the fourth limit in (2.2). This completes the proof of Theorem 2.1. [
4.7. Appendix to the Proof of Theorem 2.8

In Section 3, we have proved Theorem 2.8 only with the exception of the remark

that the measures v;,j = —1,0,1, co, defined in (2.28) and (2.29) are the same as
those appearing in the Theorems 2.1 and 2.2. This remark has been made in assertion
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(1) of Theorem 2.8. Now, after the proofs of Theorems 2.1 and 2.2 we know that this
remark is correct. We will show in this appendix that no circular argument has been
applied.

Indeed, all results proved in Section 3 and also all results proved in the present
section up to this point were based on the analytic definition of the measures v;,j =
—1,0,1, o0, by (2.28) and (2.29). This definition uses only the Riemann surface #
and the function / introduced in Definitions 2.3 and 2.4, respectively. Thus, the
measures v; have been defined by geometrical considerations only. The asymptotic
behavior of the Hermite—Padé polynomials P,, Q,, R,, and the remainder term E,
has played no role in this definition. [
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